resnet.py 17.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

15
import math
16 17
from numbers import Integral

Q
qingqing01 已提交
18 19 20 21 22
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
F
Feng Ni 已提交
23
from ppdet.modeling.layers import DeformableConvV2
24 25
from .name_adapter import NameAdapter
from ..shape_spec import ShapeSpec
Q
qingqing01 已提交
26

27 28
__all__ = ['ResNet', 'Res5Head']

29 30 31 32 33 34 35 36
ResNet_cfg = {
    18: [2, 2, 2, 2],
    34: [3, 4, 6, 3],
    50: [3, 4, 6, 3],
    101: [3, 4, 23, 3],
    152: [3, 8, 36, 3],
}

Q
qingqing01 已提交
37 38 39 40 41 42 43 44

class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 name_adapter,
45
                 groups=1,
Q
qingqing01 已提交
46 47 48 49 50
                 act=None,
                 norm_type='bn',
                 norm_decay=0.,
                 freeze_norm=True,
                 lr=1.0,
F
Feng Ni 已提交
51
                 dcn_v2=False,
Q
qingqing01 已提交
52 53 54 55 56 57
                 name=None):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn']
        self.norm_type = norm_type
        self.act = act

F
Feng Ni 已提交
58
        if not dcn_v2:
59
            self.conv = nn.Conv2D(
F
Feng Ni 已提交
60 61 62 63 64
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
65
                groups=groups,
66
                weight_attr=paddle.ParamAttr(
67
                    learning_rate=lr, ),
F
Feng Ni 已提交
68 69 70 71 72 73 74 75
                bias_attr=False)
        else:
            self.conv = DeformableConvV2(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
76
                groups=groups,
77
                weight_attr=paddle.ParamAttr(
78
                    learning_rate=lr, ),
F
Feng Ni 已提交
79 80
                bias_attr=False,
                name=name)
Q
qingqing01 已提交
81 82 83

        bn_name = name_adapter.fix_conv_norm_name(name)
        norm_lr = 0. if freeze_norm else lr
84
        param_attr = paddle.ParamAttr(
Q
qingqing01 已提交
85 86 87
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay),
            trainable=False if freeze_norm else True)
88
        bias_attr = paddle.ParamAttr(
Q
qingqing01 已提交
89 90 91 92 93
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay),
            trainable=False if freeze_norm else True)

        global_stats = True if freeze_norm else False
94 95 96 97 98 99 100 101 102
        if norm_type == 'sync_bn':
            self.norm = nn.SyncBatchNorm(
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
        else:
            self.norm = nn.BatchNorm(
                ch_out,
                act=None,
                param_attr=param_attr,
                bias_attr=bias_attr,
103
                use_global_stats=global_stats)
Q
qingqing01 已提交
104 105 106 107 108 109 110 111
        norm_params = self.norm.parameters()

        if freeze_norm:
            for param in norm_params:
                param.stop_gradient = True

    def forward(self, inputs):
        out = self.conv(inputs)
112
        if self.norm_type in ['bn', 'sync_bn']:
Q
qingqing01 已提交
113
            out = self.norm(out)
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        if self.act:
            out = getattr(F, self.act)(out)
        return out


class BasicBlock(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 stride,
                 shortcut,
                 name_adapter,
                 name,
                 variant='b',
                 lr=1.0,
                 norm_type='bn',
                 norm_decay=0.,
                 freeze_norm=True,
                 dcn_v2=False):
        super(BasicBlock, self).__init__()
        assert dcn_v2 is False, "Not implemented yet."
        conv_name1, conv_name2, shortcut_name = name_adapter.fix_basicblock_name(
            name)

        self.shortcut = shortcut
        if not shortcut:
            if variant == 'd' and stride == 2:
                self.short = nn.Sequential()
                self.short.add_sublayer(
                    'pool',
                    nn.AvgPool2D(
                        kernel_size=2, stride=2, padding=0, ceil_mode=True))
                self.short.add_sublayer(
                    'conv',
                    ConvNormLayer(
                        ch_in=ch_in,
                        ch_out=ch_out,
                        filter_size=1,
                        stride=1,
                        name_adapter=name_adapter,
                        norm_type=norm_type,
                        norm_decay=norm_decay,
                        freeze_norm=freeze_norm,
                        lr=lr,
                        name=shortcut_name))
            else:
                self.short = ConvNormLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=1,
                    stride=stride,
                    name_adapter=name_adapter,
                    norm_type=norm_type,
                    norm_decay=norm_decay,
                    freeze_norm=freeze_norm,
                    lr=lr,
                    name=shortcut_name)

        self.branch2a = ConvNormLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=3,
            stride=stride,
            name_adapter=name_adapter,
            act='relu',
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
            name=conv_name1)

        self.branch2b = ConvNormLayer(
            ch_in=ch_out,
            ch_out=ch_out,
            filter_size=3,
            stride=1,
            name_adapter=name_adapter,
            act=None,
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
            name=conv_name2)

    def forward(self, inputs):
        out = self.branch2a(inputs)
        out = self.branch2b(out)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        out = paddle.add(x=out, y=short)
        out = F.relu(out)

Q
qingqing01 已提交
210 211 212 213 214 215 216 217 218 219 220 221
        return out


class BottleNeck(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 stride,
                 shortcut,
                 name_adapter,
                 name,
                 variant='b',
222 223 224
                 groups=1,
                 base_width=4,
                 base_channels=64,
Q
qingqing01 已提交
225 226 227
                 lr=1.0,
                 norm_type='bn',
                 norm_decay=0.,
F
Feng Ni 已提交
228 229
                 freeze_norm=True,
                 dcn_v2=False):
Q
qingqing01 已提交
230 231 232 233 234 235
        super(BottleNeck, self).__init__()
        if variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

236 237 238 239 240 241 242 243
        # ResNeXt
        if groups == 1:
            width = ch_out
        else:
            width = int(
                math.floor(ch_out * (base_width * 1.0 / base_channels)) *
                groups)

Q
qingqing01 已提交
244 245 246 247 248
        conv_name1, conv_name2, conv_name3, \
            shortcut_name = name_adapter.fix_bottleneck_name(name)

        self.shortcut = shortcut
        if not shortcut:
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            if variant == 'd' and stride == 2:
                self.short = nn.Sequential()
                self.short.add_sublayer(
                    'pool',
                    nn.AvgPool2D(
                        kernel_size=2, stride=2, padding=0, ceil_mode=True))
                self.short.add_sublayer(
                    'conv',
                    ConvNormLayer(
                        ch_in=ch_in,
                        ch_out=ch_out * 4,
                        filter_size=1,
                        stride=1,
                        name_adapter=name_adapter,
                        norm_type=norm_type,
                        norm_decay=norm_decay,
                        freeze_norm=freeze_norm,
                        lr=lr,
                        name=shortcut_name))
            else:
                self.short = ConvNormLayer(
                    ch_in=ch_in,
                    ch_out=ch_out * 4,
                    filter_size=1,
                    stride=stride,
                    name_adapter=name_adapter,
                    norm_type=norm_type,
                    norm_decay=norm_decay,
                    freeze_norm=freeze_norm,
                    lr=lr,
                    name=shortcut_name)
Q
qingqing01 已提交
280 281 282

        self.branch2a = ConvNormLayer(
            ch_in=ch_in,
283
            ch_out=width,
Q
qingqing01 已提交
284 285 286
            filter_size=1,
            stride=stride1,
            name_adapter=name_adapter,
287
            groups=1,
Q
qingqing01 已提交
288 289 290 291 292 293 294 295
            act='relu',
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
            name=conv_name1)

        self.branch2b = ConvNormLayer(
296 297
            ch_in=width,
            ch_out=width,
Q
qingqing01 已提交
298 299 300
            filter_size=3,
            stride=stride2,
            name_adapter=name_adapter,
301
            groups=groups,
Q
qingqing01 已提交
302 303 304 305 306
            act='relu',
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
F
Feng Ni 已提交
307
            dcn_v2=dcn_v2,
Q
qingqing01 已提交
308 309 310
            name=conv_name2)

        self.branch2c = ConvNormLayer(
311
            ch_in=width,
Q
qingqing01 已提交
312 313 314 315
            ch_out=ch_out * 4,
            filter_size=1,
            stride=1,
            name_adapter=name_adapter,
316
            groups=1,
Q
qingqing01 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
            norm_type=norm_type,
            norm_decay=norm_decay,
            freeze_norm=freeze_norm,
            lr=lr,
            name=conv_name3)

    def forward(self, inputs):

        out = self.branch2a(inputs)
        out = self.branch2b(out)
        out = self.branch2c(out)
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        out = paddle.add(x=out, y=short)
        out = F.relu(out)

        return out


class Blocks(nn.Layer):
    def __init__(self,
341
                 depth,
Q
qingqing01 已提交
342 343 344 345 346
                 ch_in,
                 ch_out,
                 count,
                 name_adapter,
                 stage_num,
347 348 349 350
                 variant='b',
                 groups=1,
                 base_width=-1,
                 base_channels=-1,
Q
qingqing01 已提交
351 352 353
                 lr=1.0,
                 norm_type='bn',
                 norm_decay=0.,
F
Feng Ni 已提交
354 355
                 freeze_norm=True,
                 dcn_v2=False):
Q
qingqing01 已提交
356 357 358 359 360
        super(Blocks, self).__init__()

        self.blocks = []
        for i in range(count):
            conv_name = name_adapter.fix_layer_warp_name(stage_num, count, i)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            if depth >= 50:
                block = self.add_sublayer(
                    conv_name,
                    BottleNeck(
                        ch_in=ch_in if i == 0 else ch_out * 4,
                        ch_out=ch_out,
                        stride=2 if i == 0 and stage_num != 2 else 1,
                        shortcut=False if i == 0 else True,
                        name_adapter=name_adapter,
                        name=conv_name,
                        variant=variant,
                        groups=groups,
                        base_width=base_width,
                        base_channels=base_channels,
                        lr=lr,
                        norm_type=norm_type,
                        norm_decay=norm_decay,
                        freeze_norm=freeze_norm,
                        dcn_v2=dcn_v2))
            else:
                ch_in = ch_in // 4 if i > 0 else ch_in
                block = self.add_sublayer(
                    conv_name,
                    BasicBlock(
                        ch_in=ch_in if i == 0 else ch_out,
                        ch_out=ch_out,
                        stride=2 if i == 0 and stage_num != 2 else 1,
                        shortcut=False if i == 0 else True,
                        name_adapter=name_adapter,
                        name=conv_name,
                        variant=variant,
                        lr=lr,
                        norm_type=norm_type,
                        norm_decay=norm_decay,
                        freeze_norm=freeze_norm,
                        dcn_v2=dcn_v2))
Q
qingqing01 已提交
397 398 399 400 401 402 403 404 405 406 407 408
            self.blocks.append(block)

    def forward(self, inputs):
        block_out = inputs
        for block in self.blocks:
            block_out = block(block_out)
        return block_out


@register
@serializable
class ResNet(nn.Layer):
409 410
    __shared__ = ['norm_type']

Q
qingqing01 已提交
411 412 413
    def __init__(self,
                 depth=50,
                 variant='b',
414 415 416 417
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0],
                 groups=1,
                 base_width=-1,
                 base_channels=-1,
Q
qingqing01 已提交
418 419 420 421 422
                 norm_type='bn',
                 norm_decay=0,
                 freeze_norm=True,
                 freeze_at=0,
                 return_idx=[0, 1, 2, 3],
F
Feng Ni 已提交
423
                 dcn_v2_stages=[-1],
Q
qingqing01 已提交
424 425
                 num_stages=4):
        super(ResNet, self).__init__()
426 427
        self._model_type = 'ResNet' if groups == 1 else 'ResNeXt'
        assert num_stages >= 1 and num_stages <= 4
Q
qingqing01 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
        self.depth = depth
        self.variant = variant
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.freeze_at = freeze_at
        if isinstance(return_idx, Integral):
            return_idx = [return_idx]
        assert max(return_idx) < num_stages, \
            'the maximum return index must smaller than num_stages, ' \
            'but received maximum return index is {} and num_stages ' \
            'is {}'.format(max(return_idx), num_stages)
        self.return_idx = return_idx
        self.num_stages = num_stages
442 443 444 445 446
        assert len(lr_mult_list) == 4, \
            "lr_mult_list length must be 4 but got {}".format(len(lr_mult_list))
        if isinstance(dcn_v2_stages, Integral):
            dcn_v2_stages = [dcn_v2_stages]
        assert max(dcn_v2_stages) < num_stages
Q
qingqing01 已提交
447

F
Feng Ni 已提交
448 449 450 451 452
        if isinstance(dcn_v2_stages, Integral):
            dcn_v2_stages = [dcn_v2_stages]
        assert max(dcn_v2_stages) < num_stages
        self.dcn_v2_stages = dcn_v2_stages

Q
qingqing01 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        block_nums = ResNet_cfg[depth]
        na = NameAdapter(self)

        conv1_name = na.fix_c1_stage_name()
        if variant in ['c', 'd']:
            conv_def = [
                [3, 32, 3, 2, "conv1_1"],
                [32, 32, 3, 1, "conv1_2"],
                [32, 64, 3, 1, "conv1_3"],
            ]
        else:
            conv_def = [[3, 64, 7, 2, conv1_name]]
        self.conv1 = nn.Sequential()
        for (c_in, c_out, k, s, _name) in conv_def:
            self.conv1.add_sublayer(
                _name,
                ConvNormLayer(
                    ch_in=c_in,
                    ch_out=c_out,
                    filter_size=k,
                    stride=s,
                    name_adapter=na,
475
                    groups=1,
Q
qingqing01 已提交
476 477 478 479
                    act='relu',
                    norm_type=norm_type,
                    norm_decay=norm_decay,
                    freeze_norm=freeze_norm,
480
                    lr=1.0,
Q
qingqing01 已提交
481 482 483 484
                    name=_name))

        ch_in_list = [64, 256, 512, 1024]
        ch_out_list = [64, 128, 256, 512]
485 486 487 488
        self.expansion = 4 if depth >= 50 else 1

        self._out_channels = [self.expansion * v for v in ch_out_list]
        self._out_strides = [4, 8, 16, 32]
Q
qingqing01 已提交
489 490 491

        self.res_layers = []
        for i in range(num_stages):
492
            lr_mult = lr_mult_list[i]
Q
qingqing01 已提交
493 494 495 496 497
            stage_num = i + 2
            res_name = "res{}".format(stage_num)
            res_layer = self.add_sublayer(
                res_name,
                Blocks(
498 499 500
                    depth,
                    ch_in_list[i] // 4
                    if i > 0 and depth < 50 else ch_in_list[i],
Q
qingqing01 已提交
501 502 503 504
                    ch_out_list[i],
                    count=block_nums[i],
                    name_adapter=na,
                    stage_num=stage_num,
505 506 507 508
                    variant=variant,
                    groups=groups,
                    base_width=base_width,
                    base_channels=base_channels,
Q
qingqing01 已提交
509 510 511
                    lr=lr_mult,
                    norm_type=norm_type,
                    norm_decay=norm_decay,
F
Feng Ni 已提交
512 513
                    freeze_norm=freeze_norm,
                    dcn_v2=(i in self.dcn_v2_stages)))
Q
qingqing01 已提交
514 515
            self.res_layers.append(res_layer)

516 517 518 519 520 521 522 523
    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=self._out_channels[i], stride=self._out_strides[i])
            for i in self.return_idx
        ]

Q
qingqing01 已提交
524 525 526
    def forward(self, inputs):
        x = inputs['image']
        conv1 = self.conv1(x)
527
        x = F.max_pool2d(conv1, kernel_size=3, stride=2, padding=1)
Q
qingqing01 已提交
528 529 530 531 532 533 534 535
        outs = []
        for idx, stage in enumerate(self.res_layers):
            x = stage(x)
            if idx == self.freeze_at:
                x.stop_gradient = True
            if idx in self.return_idx:
                outs.append(x)
        return outs
536 537 538 539


@register
class Res5Head(nn.Layer):
540
    def __init__(self, depth=50):
541
        super(Res5Head, self).__init__()
542 543 544
        feat_in, feat_out = [1024, 512]
        if depth < 50:
            feat_in = 256
545
        na = NameAdapter(self)
W
wangguanzhong 已提交
546 547
        self.res5 = Blocks(
            depth, feat_in, feat_out, count=3, name_adapter=na, stage_num=5)
548 549 550 551 552 553
        self.feat_out = feat_out if depth < 50 else feat_out * 4

    @property
    def out_shape(self):
        return [ShapeSpec(
            channels=self.feat_out,
554
            stride=16, )]
555 556 557 558

    def forward(self, roi_feat, stage=0):
        y = self.res5(roi_feat)
        return y