analyzer_seq_pool1_tester.cc 11.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21 22 23
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
struct OneSlotInBatch {
  std::string name;
  std::vector<std::vector<float>> data;
  std::vector<int> shape;
  std::vector<size_t> lod;
};

struct DataRecord {
  std::vector<std::vector<OneSlotInBatch>> batched_data;
  std::map<std::string, std::vector<std::vector<float>>> datasets;
  size_t batch_iter{0}, num_samples;  // total number of samples

  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    constexpr int num_slots = 154;
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      std::vector<float> slot_data;
      split_to_float(data[1], ' ', &slot_data);
      std::string name = data[0];
      PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0,
                        "line %d, %s should be divisible", num_lines, name);
      datasets[name].emplace_back(std::move(slot_data));
    }
    num_samples = num_lines / num_slots;
    PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
                      "num samples should be divisible");
    PADDLE_ENFORCE_GT(num_samples, 0);
  }

  void Prepare(int bs) {
    for (auto it = datasets.begin(); it != datasets.end(); ++it) {
      PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
                        "size of each slot should be equal");
    }
    size_t num_batches = num_samples / bs;
    EXPECT_GT(num_batches, 0);
    batched_data.resize(num_batches);
    for (auto &one_batch : batched_data) {
      one_batch.resize(datasets.size());
      size_t i = 0;
      for (auto it = datasets.begin(); it != datasets.end(); ++it) {
        auto &slot = one_batch[i];
        slot.name = it->first;
        slot.data.resize(bs);
        slot.lod.resize(bs + 1);
        slot.lod[0] = 0;
        auto &lod = slot.lod;
        auto &datas = it->second;
        for (int k = 0; k < bs; ++k) {
          size_t id = k + batch_iter * bs;
          std::copy(datas[id].begin(), datas[id].end(),
                    std::back_inserter(slot.data[k]));
          size_t len = datas[id].size() / 11;
          PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
                            "%s %d size should be divisible", slot.name, id);
          lod[k + 1] = lod[k] + len;
        }
        slot.shape.assign({static_cast<int>(lod[bs]), 11});
        i++;
      }
    }
  }

  const std::vector<OneSlotInBatch> &NextBatch() {
    if (batch_iter >= batched_data.size() - 1) {
      batch_iter = -1;
    }
    return batched_data[++batch_iter];
  }
};

static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
  tensor->name = slot.name + "_embed";
  tensor->shape = slot.shape;
  tensor->dtype = PaddleDType::FLOAT32;
  tensor->lod.clear();
  tensor->lod.emplace_back(slot.lod);
  TensorAssignData(tensor, slot.data);
}

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
  const auto &one_batch = data->NextBatch();
  input_slots->resize(one_batch.size());
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    TensorAssignSlot(&((*input_slots)[i]), slot);
  }
}

T
tensor-tang 已提交
124
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
T
tensor-tang 已提交
125 126 127 128 129 130 131 132 133
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
  LOG(INFO) << "number of samples: "
            << data.batched_data.size() * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data);
    (*inputs).emplace_back(input_slots);
  }
T
tensor-tang 已提交
134 135
}

T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145 146
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->pass_builder()->TurnOnDebug();
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
}

T
tensor-tang 已提交
147 148
void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
T
tensor-tang 已提交
149
  SetConfig(&cfg, use_mkldnn);
T
tensor-tang 已提交
150 151 152 153 154 155 156 157 158 159

  std::vector<PaddleTensor> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_seq_pool1, profile) { profile(); }

T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

171 172 173 174 175 176 177 178 179 180 181
// Compare Deterministic result
TEST(Analyzer_seq_pool1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

182
void analysis_fuse_statis(bool use_zerocopy) {
T
tensor-tang 已提交
183 184
  AnalysisConfig cfg;
  SetConfig(&cfg);
185
  cfg.SwitchUseFeedFetchOps(!use_zerocopy);
T
tensor-tang 已提交
186 187
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
188
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
T
tensor-tang 已提交
189 190
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
T
tensor-tang 已提交
191 192
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
T
tensor-tang 已提交
193
  LOG(INFO) << "num_ops: " << num_ops;
T
tensor-tang 已提交
194
  EXPECT_EQ(num_ops, 195);
T
tensor-tang 已提交
195 196
}

197 198 199
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) { analysis_fuse_statis(false); }

T
tensor-tang 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
void PrepareZeroCopyInputs(
    const std::unique_ptr<PaddlePredictor> &predictor,
    std::vector<std::unique_ptr<ZeroCopyTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  // only feed one batch
  const auto &one_batch = data.NextBatch();
  inputs->clear();
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    auto tensor = predictor->GetInputTensor(slot.name + "_embed");
    tensor->Reshape(slot.shape);
    tensor->SetLoD({slot.lod});
    ZeroCopyTensorAssignData<float>(tensor.get(), slot.data);
    inputs->emplace_back(std::move(tensor));
  }
}

217 218 219
// diff: similarity_norm.tmp_0, // speed: fc_4.tmp_1
static const char out_var_name[] = "reduce_sum_0.tmp_0";

220 221
// return the output values
std::vector<float> zerocopy_profile(int repeat_times) {
T
tensor-tang 已提交
222 223 224 225 226 227
  AnalysisConfig config;
  SetConfig(&config);
  config.SwitchUseFeedFetchOps(false);
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
  PrepareZeroCopyInputs(predictor, &inputs);
228
  auto output_tensor = predictor->GetOutputTensor(out_var_name);
T
tensor-tang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  Timer timer;
  LOG(INFO) << "Warm up run...";
  timer.tic();
  predictor->ZeroCopyRun();
  PrintTime(FLAGS_batch_size, 1, 1, 0, timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
  LOG(INFO) << "Run " << repeat_times << " times...";
  timer.tic();
  for (int i = 0; i < repeat_times; i++) {
    predictor->ZeroCopyRun();
  }
  PrintTime(FLAGS_batch_size, repeat_times, 1, 0, timer.toc() / repeat_times,
            1);
244

245
  LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
246 247 248 249 250 251 252 253
  PaddlePlace place;
  int output_size{0};
  auto *pdata = output_tensor->data<float>(&place, &output_size);
  std::vector<float> res(output_size);
  for (int i = 0; i < output_size; ++i) {
    res[i] = pdata[i];
  }
  return res;
T
tensor-tang 已提交
254 255 256 257
}

TEST(Analyzer_seq_pool1, zerocopy_profile) { zerocopy_profile(FLAGS_repeat); }

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
TEST(Analyzer_seq_pool1, zerocopy_profile_threads) {
  AnalysisConfig config;
  SetConfig(&config);
  config.SwitchUseFeedFetchOps(false);

  auto base_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  double total_time_of_threads{0};
  std::vector<std::thread> threads;
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
    predictors.emplace_back(base_predictor->Clone());
    // predictors.emplace_back(CreatePaddlePredictor<AnalysisConfig>(config));
  }

  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
    threads.emplace_back([config, &total_time_of_threads, &predictors, tid] {
      auto &predictor = predictors[tid];
      std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
      PrepareZeroCopyInputs(predictor, &inputs);
      auto output_tensor = predictor->GetOutputTensor(out_var_name);
      Timer timer;
      double total_time{0};

      LOG(INFO) << "Warm up run...";
      timer.tic();
      predictor->ZeroCopyRun();
      PrintTime(FLAGS_batch_size, 1, FLAGS_num_threads, tid, timer.toc(), 1);
      if (FLAGS_profile) {
        paddle::platform::ResetProfiler();
      }
      int repeat_times = FLAGS_repeat;
      LOG(INFO) << "Run " << repeat_times << " times...";
      timer.tic();

      for (int i = 0; i < repeat_times; i++) {
        predictor->ZeroCopyRun();
      }
      total_time += timer.toc();
      total_time_of_threads += total_time;

      LOG(INFO) << "thread time: " << total_time / repeat_times;
    });
  }

  for (auto &t : threads) {
    t.join();
  }

  LOG(INFO) << "average time: "
            << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
}

310 311 312
TEST(Analyzer_seq_pool1, zerocopy_fuse_statis) { analysis_fuse_statis(true); }

TEST(Analyzer_seq_pool1, zerocopy_compare_native) {
T
tensor-tang 已提交
313 314
  AnalysisConfig config;
  SetConfig(&config);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  config.SwitchUseFeedFetchOps(true);
  auto predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
  std::vector<PaddleTensor> native_outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  ASSERT_TRUE(predictor->Run(input_slots_all[0], &native_outputs));
  EXPECT_EQ(native_outputs.size(), 1UL);

  auto zerocopy_output = zerocopy_profile(1);
  EXPECT_EQ(zerocopy_output.size() * sizeof(float),
            native_outputs.front().data.length());
  auto *native_data = static_cast<float *>(native_outputs.front().data.data());
  for (size_t i = 0; i < zerocopy_output.size(); ++i) {
    EXPECT_NEAR(zerocopy_output[i], native_data[i], 1e-3);
  }
T
tensor-tang 已提交
330 331
}

T
tensor-tang 已提交
332 333 334
}  // namespace analysis
}  // namespace inference
}  // namespace paddle