sparse_rcnn.py 3.2 KB
Newer Older
F
FL77N 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from ppdet.core.workspace import register, create
from .meta_arch import BaseArch

__all__ = ["SparseRCNN"]


@register
class SparseRCNN(BaseArch):
    __category__ = 'architecture'
    __inject__ = ["postprocess"]

    def __init__(self,
                 backbone,
                 neck,
                 head="SparsercnnHead",
                 postprocess="SparsePostProcess"):
        super(SparseRCNN, self).__init__()
        self.backbone = backbone
        self.neck = neck
        self.head = head
        self.postprocess = postprocess

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        backbone = create(cfg['backbone'])

        kwargs = {'input_shape': backbone.out_shape}
        neck = create(cfg['neck'], **kwargs)

        kwargs = {'roi_input_shape': neck.out_shape}
        head = create(cfg['head'], **kwargs)

        return {
            'backbone': backbone,
            'neck': neck,
            "head": head,
        }

    def _forward(self):
        body_feats = self.backbone(self.inputs)
        fpn_feats = self.neck(body_feats)
        head_outs = self.head(fpn_feats, self.inputs["img_whwh"])

        if not self.training:
U
ucsk 已提交
63
            bbox_pred, bbox_num = self.postprocess(
F
FL77N 已提交
64
                head_outs["pred_logits"], head_outs["pred_boxes"],
U
ucsk 已提交
65 66
                self.inputs["scale_factor_whwh"], self.inputs["ori_shape"])
            return bbox_pred, bbox_num
F
FL77N 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        else:
            return head_outs

    def get_loss(self):
        batch_gt_class = self.inputs["gt_class"]
        batch_gt_box = self.inputs["gt_bbox"]
        batch_whwh = self.inputs["img_whwh"]
        targets = []

        for i in range(len(batch_gt_class)):
            boxes = batch_gt_box[i]
            labels = batch_gt_class[i].squeeze(-1)
            img_whwh = batch_whwh[i]
            img_whwh_tgt = img_whwh.unsqueeze(0).tile([int(boxes.shape[0]), 1])
            targets.append({
                "boxes": boxes,
                "labels": labels,
                "img_whwh": img_whwh,
                "img_whwh_tgt": img_whwh_tgt
            })

        outputs = self._forward()
        loss_dict = self.head.get_loss(outputs, targets)
        acc = loss_dict["acc"]
        loss_dict.pop("acc")
        total_loss = sum(loss_dict.values())
        loss_dict.update({"loss": total_loss, "acc": acc})
        return loss_dict

    def get_pred(self):
        bbox_pred, bbox_num = self._forward()
        output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
        return output