deformable_transformer.py 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
#
# Modified from Deformable-DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr

from ppdet.core.workspace import register
from ..layers import MultiHeadAttention
from .position_encoding import PositionEmbedding
from .utils import _get_clones, deformable_attention_core_func
from ..initializer import linear_init_, constant_, xavier_uniform_, normal_

__all__ = ['DeformableTransformer']


class MSDeformableAttention(nn.Layer):
    def __init__(self,
                 embed_dim=256,
                 num_heads=8,
                 num_levels=4,
                 num_points=4,
                 lr_mult=0.1):
        """
        Multi-Scale Deformable Attention Module
        """
        super(MSDeformableAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.num_levels = num_levels
        self.num_points = num_points
        self.total_points = num_heads * num_levels * num_points

        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        self.sampling_offsets = nn.Linear(
            embed_dim,
            self.total_points * 2,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))

        self.attention_weights = nn.Linear(embed_dim, self.total_points)
        self.value_proj = nn.Linear(embed_dim, embed_dim)
        self.output_proj = nn.Linear(embed_dim, embed_dim)

        self._reset_parameters()

    def _reset_parameters(self):
        # sampling_offsets
        constant_(self.sampling_offsets.weight)
        thetas = paddle.arange(
            self.num_heads,
            dtype=paddle.float32) * (2.0 * math.pi / self.num_heads)
        grid_init = paddle.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = grid_init / grid_init.abs().max(-1, keepdim=True)
        grid_init = grid_init.reshape([self.num_heads, 1, 1, 2]).tile(
            [1, self.num_levels, self.num_points, 1])
        scaling = paddle.arange(
            1, self.num_points + 1,
            dtype=paddle.float32).reshape([1, 1, -1, 1])
        grid_init *= scaling
        self.sampling_offsets.bias.set_value(grid_init.flatten())
        # attention_weights
        constant_(self.attention_weights.weight)
        constant_(self.attention_weights.bias)
        # proj
        xavier_uniform_(self.value_proj.weight)
        constant_(self.value_proj.bias)
        xavier_uniform_(self.output_proj.weight)
        constant_(self.output_proj.bias)

    def forward(self,
                query,
                reference_points,
                value,
                value_spatial_shapes,
                value_mask=None):
        """
        Args:
            query (Tensor): [bs, query_length, C]
            reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
                bottom-right (1, 1), including padding area
            value (Tensor): [bs, value_length, C]
            value_spatial_shapes (Tensor): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
            value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements

        Returns:
            output (Tensor): [bs, Length_{query}, C]
        """
        bs, Len_q = query.shape[:2]
        Len_v = value.shape[1]
        assert int(value_spatial_shapes.prod(1).sum()) == Len_v

        value = self.value_proj(value)
        if value_mask is not None:
            value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
            value *= value_mask
        value = value.reshape([bs, Len_v, self.num_heads, self.head_dim])

        sampling_offsets = self.sampling_offsets(query).reshape(
            [bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2])
        attention_weights = self.attention_weights(query).reshape(
            [bs, Len_q, self.num_heads, self.num_levels * self.num_points])
        attention_weights = F.softmax(attention_weights, -1).reshape(
            [bs, Len_q, self.num_heads, self.num_levels, self.num_points])

        offset_normalizer = value_spatial_shapes.flip([1]).reshape(
            [1, 1, 1, self.num_levels, 1, 2])
        sampling_locations = reference_points.reshape([
            bs, Len_q, 1, self.num_levels, 1, 2
        ]) + sampling_offsets / offset_normalizer

        output = deformable_attention_core_func(
            value, value_spatial_shapes, sampling_locations, attention_weights)
        output = self.output_proj(output)

        return output


class DeformableTransformerEncoderLayer(nn.Layer):
    def __init__(self,
                 d_model=256,
                 n_head=8,
                 dim_feedforward=1024,
                 dropout=0.1,
                 activation="relu",
                 n_levels=4,
                 n_points=4,
                 weight_attr=None,
                 bias_attr=None):
        super(DeformableTransformerEncoderLayer, self).__init__()
        # self attention
        self.self_attn = MSDeformableAttention(d_model, n_head, n_levels,
                                               n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)
        # ffn
        self.linear1 = nn.Linear(d_model, dim_feedforward, weight_attr,
                                 bias_attr)
        self.activation = getattr(F, activation)
        self.dropout2 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model, weight_attr,
                                 bias_attr)
        self.dropout3 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)
        xavier_uniform_(self.linear1.weight)
        xavier_uniform_(self.linear2.weight)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, src):
        src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
        src = src + self.dropout3(src2)
        src = self.norm2(src)
        return src

    def forward(self,
                src,
                reference_points,
                spatial_shapes,
                src_mask=None,
                pos_embed=None):
        # self attention
        src2 = self.self_attn(
            self.with_pos_embed(src, pos_embed), reference_points, src,
            spatial_shapes, src_mask)
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        # ffn
        src = self.forward_ffn(src)

        return src


class DeformableTransformerEncoder(nn.Layer):
    def __init__(self, encoder_layer, num_layers):
        super(DeformableTransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios):
        valid_ratios = valid_ratios.unsqueeze(1)
        reference_points = []
        for i, (H, W) in enumerate(spatial_shapes.tolist()):
            ref_y, ref_x = paddle.meshgrid(
                paddle.linspace(0.5, H - 0.5, H),
                paddle.linspace(0.5, W - 0.5, W))
            ref_y = ref_y.flatten().unsqueeze(0) / (valid_ratios[:, :, i, 1] *
                                                    H)
            ref_x = ref_x.flatten().unsqueeze(0) / (valid_ratios[:, :, i, 0] *
                                                    W)
            reference_points.append(paddle.stack((ref_x, ref_y), axis=-1))
        reference_points = paddle.concat(reference_points, 1).unsqueeze(2)
        reference_points = reference_points * valid_ratios
        return reference_points

    def forward(self,
                src,
                spatial_shapes,
                src_mask=None,
                pos_embed=None,
                valid_ratios=None):
        output = src
        if valid_ratios is None:
            valid_ratios = paddle.ones(
                [src.shape[0], spatial_shapes.shape[0], 2])
        reference_points = self.get_reference_points(spatial_shapes,
                                                     valid_ratios)
        for layer in self.layers:
            output = layer(output, reference_points, spatial_shapes, src_mask,
                           pos_embed)

        return output


class DeformableTransformerDecoderLayer(nn.Layer):
    def __init__(self,
                 d_model=256,
                 n_head=8,
                 dim_feedforward=1024,
                 dropout=0.1,
                 activation="relu",
                 n_levels=4,
                 n_points=4,
                 weight_attr=None,
                 bias_attr=None):
        super(DeformableTransformerDecoderLayer, self).__init__()

        # self attention
        self.self_attn = MultiHeadAttention(d_model, n_head, dropout=dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # cross attention
        self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels,
                                                n_points)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, dim_feedforward, weight_attr,
                                 bias_attr)
        self.activation = getattr(F, activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model, weight_attr,
                                 bias_attr)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)
        xavier_uniform_(self.linear1.weight)
        xavier_uniform_(self.linear2.weight)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward(self,
                tgt,
                reference_points,
                memory,
                memory_spatial_shapes,
                memory_mask=None,
                query_pos_embed=None):
        # self attention
        q = k = self.with_pos_embed(tgt, query_pos_embed)
        tgt2 = self.self_attn(q, k, value=tgt)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # cross attention
        tgt2 = self.cross_attn(
            self.with_pos_embed(tgt, query_pos_embed), reference_points, memory,
            memory_spatial_shapes, memory_mask)
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # ffn
        tgt = self.forward_ffn(tgt)

        return tgt


class DeformableTransformerDecoder(nn.Layer):
    def __init__(self, decoder_layer, num_layers, return_intermediate=False):
        super(DeformableTransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.return_intermediate = return_intermediate

    def forward(self,
                tgt,
                reference_points,
                memory,
                memory_spatial_shapes,
                memory_mask=None,
                query_pos_embed=None):
        output = tgt
        intermediate = []
        for lid, layer in enumerate(self.layers):
            output = layer(output, reference_points, memory,
                           memory_spatial_shapes, memory_mask, query_pos_embed)

            if self.return_intermediate:
                intermediate.append(output)

        if self.return_intermediate:
            return paddle.stack(intermediate)

        return output.unsqueeze(0)


@register
class DeformableTransformer(nn.Layer):
    __shared__ = ['hidden_dim']

    def __init__(self,
                 num_queries=300,
                 position_embed_type='sine',
                 return_intermediate_dec=True,
                 backbone_num_channels=[512, 1024, 2048],
                 num_feature_levels=4,
                 num_encoder_points=4,
                 num_decoder_points=4,
                 hidden_dim=256,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=1024,
                 dropout=0.1,
                 activation="relu",
                 lr_mult=0.1,
                 weight_attr=None,
                 bias_attr=None):
        super(DeformableTransformer, self).__init__()
        assert position_embed_type in ['sine', 'learned'], \
            f'ValueError: position_embed_type not supported {position_embed_type}!'
        assert len(backbone_num_channels) <= num_feature_levels

        self.hidden_dim = hidden_dim
        self.nhead = nhead
        self.num_feature_levels = num_feature_levels

        encoder_layer = DeformableTransformerEncoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation,
            num_feature_levels, num_encoder_points, weight_attr, bias_attr)
        self.encoder = DeformableTransformerEncoder(encoder_layer,
                                                    num_encoder_layers)

        decoder_layer = DeformableTransformerDecoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation,
            num_feature_levels, num_decoder_points, weight_attr, bias_attr)
        self.decoder = DeformableTransformerDecoder(
            decoder_layer, num_decoder_layers, return_intermediate_dec)

        self.level_embed = nn.Embedding(num_feature_levels, hidden_dim)
        self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
        self.query_pos_embed = nn.Embedding(num_queries, hidden_dim)

        self.reference_points = nn.Linear(
            hidden_dim,
            2,
            weight_attr=ParamAttr(learning_rate=lr_mult),
            bias_attr=ParamAttr(learning_rate=lr_mult))

        self.input_proj = nn.LayerList()
        for in_channels in backbone_num_channels:
            self.input_proj.append(
                nn.Sequential(
                    nn.Conv2D(
                        in_channels,
                        hidden_dim,
                        kernel_size=1,
                        weight_attr=weight_attr,
                        bias_attr=bias_attr),
                    nn.GroupNorm(32, hidden_dim)))
        in_channels = backbone_num_channels[-1]
        for _ in range(num_feature_levels - len(backbone_num_channels)):
            self.input_proj.append(
                nn.Sequential(
                    nn.Conv2D(
                        in_channels,
                        hidden_dim,
                        kernel_size=3,
                        stride=2,
                        padding=1,
                        weight_attr=weight_attr,
                        bias_attr=bias_attr),
                    nn.GroupNorm(32, hidden_dim)))
            in_channels = hidden_dim

        self.position_embedding = PositionEmbedding(
            hidden_dim // 2,
            normalize=True if position_embed_type == 'sine' else False,
            embed_type=position_embed_type,
            offset=-0.5)

        self._reset_parameters()

    def _reset_parameters(self):
        normal_(self.level_embed.weight)
        normal_(self.tgt_embed.weight)
        normal_(self.query_pos_embed.weight)
        xavier_uniform_(self.reference_points.weight)
        constant_(self.reference_points.bias)
        for l in self.input_proj:
            xavier_uniform_(l[0].weight)
            constant_(l[0].bias)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'backbone_num_channels': [i.channels for i in input_shape], }

    def _get_valid_ratio(self, mask):
        _, H, W = mask.shape
        valid_ratio_h = paddle.sum(mask[:, :, 0], 1) / H
        valid_ratio_w = paddle.sum(mask[:, 0, :], 1) / W
        valid_ratio = paddle.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def forward(self, src_feats, src_mask=None):
        srcs = []
        for i in range(len(src_feats)):
            srcs.append(self.input_proj[i](src_feats[i]))
        if self.num_feature_levels > len(srcs):
            len_srcs = len(srcs)
            for i in range(len_srcs, self.num_feature_levels):
                if i == len_srcs:
                    srcs.append(self.input_proj[i](src_feats[-1]))
                else:
                    srcs.append(self.input_proj[i](srcs[-1]))
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        valid_ratios = []
        for level, src in enumerate(srcs):
            bs, c, h, w = src.shape
            spatial_shapes.append([h, w])
            src = src.flatten(2).transpose([0, 2, 1])
            src_flatten.append(src)
            if src_mask is not None:
479
                mask = F.interpolate(src_mask.unsqueeze(0), size=(h, w))[0]
480
            else:
481
                mask = paddle.ones([bs, h, w])
482 483 484 485 486 487
            valid_ratios.append(self._get_valid_ratio(mask))
            pos_embed = self.position_embedding(mask).flatten(2).transpose(
                [0, 2, 1])
            lvl_pos_embed = pos_embed + self.level_embed.weight[level].reshape(
                [1, 1, -1])
            lvl_pos_embed_flatten.append(lvl_pos_embed)
488
            mask = mask.flatten(1)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            mask_flatten.append(mask)
        src_flatten = paddle.concat(src_flatten, 1)
        mask_flatten = paddle.concat(mask_flatten, 1)
        lvl_pos_embed_flatten = paddle.concat(lvl_pos_embed_flatten, 1)
        # [l, 2]
        spatial_shapes = paddle.to_tensor(spatial_shapes, dtype='int64')
        # [b, l, 2]
        valid_ratios = paddle.stack(valid_ratios, 1)

        # encoder
        memory = self.encoder(src_flatten, spatial_shapes, mask_flatten,
                              lvl_pos_embed_flatten, valid_ratios)

        # prepare input for decoder
        bs, _, c = memory.shape
        query_embed = self.query_pos_embed.weight.unsqueeze(0).tile([bs, 1, 1])
        tgt = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
        reference_points = F.sigmoid(self.reference_points(query_embed))
        reference_points_input = reference_points.unsqueeze(
            2) * valid_ratios.unsqueeze(1)

        # decoder
        hs = self.decoder(tgt, reference_points_input, memory, spatial_shapes,
                          mask_flatten, query_embed)

        return (hs, memory, reference_points)