test.cc 24.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24

25 26
static double acc = 1e-5;

T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
42
      EXPECT_NEAR(target[i], refer[i], acc);
T
tensor-tang 已提交
43 44 45 46 47 48 49 50
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
51 52
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
53
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
54 55
    s.push_back(i);
  }
T
tensor-tang 已提交
56 57 58 59
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
60 61 62
  return s;
}

T
tensor-tang 已提交
63 64 65 66
namespace jit = paddle::operators::jit;

template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
67 68 69
  void operator()(const typename KernelTuples::func_type tgt, Args... args) {
    LOG(FATAL) << "Should specify this function.";
  }
T
tensor-tang 已提交
70 71 72 73 74 75
};

template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
76 77
                  const std::vector<T>& x, const std::vector<T>& y,
                  const std::vector<T>& zref) {
T
tensor-tang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(zref.size(), x.size());
    EXPECT_EQ(zref.size(), y.size());
    const T* x_data = x.data();
    const T* y_data = y.data();
    const T* zref_data = zref.data();
    const int d = zref.size();

    std::vector<T> ztgt(d);
    T* ztgt_data = ztgt.data();
    // test normal
    tgt(x_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace y
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(&a, x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(&a, ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::XYNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
147 148
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         typename jit::LSTMTuples<T>::attr_type> {
T
tensor-tang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& wp,
                  const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                  const std::vector<T>& ht_ref,
                  const typename jit::LSTMTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ct_ref.size(), ht_ref.size());
    EXPECT_EQ(ct_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
    EXPECT_EQ(wp.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
    std::vector<T> checked(2 * d);
    std::copy(xsrc.begin(), xsrc.end(), x.begin());

    const T* ct_1_data = ct_1.data();
    const T* wp_data = wp.data();
    const T* ct_ref_data = ct_ref.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ct_data = ct.data();
    T* ht_data = ht.data();
    T* checked_data = checked.data();

    paddle::operators::jit::lstm_t step;
    step.gates = x_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_data;
    step.ht = ht_data;
    if (attr.use_peephole) {
      step.wp = wp_data;
      step.checked = checked_data;
    }

    tgt(&step, &attr);
    ExpectEQ<T>(ct_data, ct_ref_data, d);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
193 194
                         std::vector<T>,
                         typename jit::GRUTuples<T>::attr_type> {
T
tensor-tang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  void operator()(const typename jit::GRUTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& ht_1,
                  const std::vector<T>& ht_ref,
                  const typename jit::GRUTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ht_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ht(ht_ref.size());
    std::copy(xsrc.begin(), xsrc.end(), x.begin());
    const T* ht_1_data = ht_1.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
    paddle::operators::jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
    tgt(&step, &attr);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

220
template <typename T>
221 222
struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
                         typename jit::SeqPoolTuples<T>::attr_type> {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  void operator()(const typename jit::SeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  const typename jit::SeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size() % yref.size(), 0);
    int w = yref.size();
    std::vector<T> y(w);
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, &attr);
    ExpectEQ<T>(y_data, yref_data, w);
  }
};

T
tensor-tang 已提交
238
template <typename T>
239 240
struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>, int, int, int> {
T
tensor-tang 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  void operator()(const typename jit::MatMulTuples<T>::func_type tgt,
                  const std::vector<T>& a, const std::vector<T>& b,
                  const std::vector<T>& cref, int m, int n, int k) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(a.size(), static_cast<size_t>(m * k));
    EXPECT_EQ(b.size(), static_cast<size_t>(k * n));
    EXPECT_EQ(cref.size(), static_cast<size_t>(m * n));
    std::vector<T> c(cref.size());
    const T* a_data = a.data();
    const T* b_data = b.data();
    const T* cref_data = cref.data();
    T* c_data = c.data();
    tgt(a_data, b_data, c_data, m, n, k);
    ExpectEQ<T>(c_data, cref_data, m * n);
  }
};

T
tensor-tang 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
template <paddle::operators::jit::KernelType KT, typename KernelTuples,
          typename PlaceType, typename... Args>
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  TestFuncWithRefer<KernelTuples, Args...> test;
  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
    test(jitcode, args...);
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
275
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
276 277
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
278
        VLOG(10) << "Test More Kernel : " << i->ImplType();
T
tensor-tang 已提交
279 280 281 282 283
        test(more, args...);
      }
    }
  }
  // test result from Get function
T
tensor-tang 已提交
284
  // VLOG(10) << "Test Get function ";
T
tensor-tang 已提交
285 286
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  test(tgt, args...);
T
tensor-tang 已提交
287 288
}

289 290
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestXYZNKernel() {
T
tensor-tang 已提交
291
  namespace jit = paddle::operators::jit;
292
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
T
tensor-tang 已提交
293
  for (int d : TestSizes()) {
294
    auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
295 296
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
297
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
298 299 300
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
301 302 303 304 305 306 307 308 309 310 311
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
312
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
313 314 315 316 317
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

T
tensor-tang 已提交
318 319
    TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>, std::vector<T>>(d, x, y, zref);
T
tensor-tang 已提交
320 321
  }
}
T
tensor-tang 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestAXYNKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
345 346
    TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
                 std::vector<T>>(d, a, x, yref);
347 348 349
  }
}

350 351 352 353 354 355 356 357 358 359
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestXYNKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
360
    RandomVec<T>(d, x.data(), -2.f, 2.f);
361 362 363 364 365 366 367 368 369 370
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
371 372
    TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>>(d, x, yref);
373 374 375
  }
}

T
tensor-tang 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestLSTMKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
            auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
            RandomVec<T>(4 * d, xsrc.data(), -2.f, 2.f);
394 395
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
415
            VLOG(10) << attr;
T
tensor-tang 已提交
416 417 418 419
            TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
                                         attr);
T
tensor-tang 已提交
420 421 422 423 424 425 426
          }
        }
      }
    }
  }
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestGRUKernel() {
  namespace jit = paddle::operators::jit;
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
  for (int d : TestSizes()) {
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
        auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
        RandomVec<T>(3 * d, xsrc.data(), -2.f, 2.f);
        RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
453
        VLOG(10) << attr;
T
tensor-tang 已提交
454 455 456
        TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
                                                     attr);
457 458 459 460 461
      }
    }
  }
}

462 463 464
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestSeqPoolKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
465 466
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
467
  for (auto type : pool_types) {
T
tensor-tang 已提交
468 469 470 471
    for (int w : TestSizes()) {
      jit::seq_pool_attr_t attr(w, type);
      for (int h : TestSizes()) {
        attr.h = h;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        auto ref = jit::GetRefer<KT, jit::SeqPoolTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
        TestAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>>(attr, x, yref, attr);
      }
    }
  }
}

T
tensor-tang 已提交
487 488 489
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestMatMulKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
490 491 492
  auto last_acc = acc;
  // TODO(intel): this should be acc issue of MKL
  acc = 1e-3;
T
tensor-tang 已提交
493 494 495 496 497 498
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
        auto ref = jit::GetRefer<KT, jit::MatMulTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
499 500
        RandomVec<T>(m * k, a.data(), -2.f, 2.f);
        RandomVec<T>(k * n, b.data(), -2.f, 2.f);
T
tensor-tang 已提交
501 502 503 504 505 506 507 508 509
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
        ref(a_data, b_data, c_data, m, n, k);
        TestAllImpls<KT, jit::MatMulTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(k, a, b, c, m, n, k);
      }
    }
  }
510
  acc = last_acc;
T
tensor-tang 已提交
511 512
}

T
tensor-tang 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestNCHW16CMulNCKernel() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data(), -2.f, 2.f);
  RandomVec<T>(n * c, y.data(), -2.f, 2.f);

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::Get<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

T
tensor-tang 已提交
566
// XYZNTuple
T
tensor-tang 已提交
567
TEST(JITKernel, kVMul) {
T
tensor-tang 已提交
568
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
569 570
  TestXYZNKernel<jit::kVMul, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVMul, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
571 572
}

T
tensor-tang 已提交
573
TEST(JITKernel, kVAdd) {
T
tensor-tang 已提交
574
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
575 576
  TestXYZNKernel<jit::kVAdd, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVAdd, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
577 578
}

T
tensor-tang 已提交
579
TEST(JITKernel, kVAddRelu) {
T
tensor-tang 已提交
580
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
581 582
  TestXYZNKernel<jit::kVAddRelu, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVAddRelu, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
583 584
}

T
tensor-tang 已提交
585
TEST(JITKernel, kVSub) {
T
tensor-tang 已提交
586
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
587 588
  TestXYZNKernel<jit::kVSub, float, paddle::platform::CPUPlace>();
  TestXYZNKernel<jit::kVSub, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
589 590 591
}

// AXYNTuples
T
tensor-tang 已提交
592
TEST(JITKernel, kVScal) {
T
tensor-tang 已提交
593
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
594 595
  TestAXYNKernel<jit::kVScal, float, paddle::platform::CPUPlace>();
  TestAXYNKernel<jit::kVScal, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
596 597
}

T
tensor-tang 已提交
598
TEST(JITKernel, kVAddBias) {
T
tensor-tang 已提交
599
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
600 601
  TestAXYNKernel<jit::kVAddBias, float, paddle::platform::CPUPlace>();
  TestAXYNKernel<jit::kVAddBias, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
602 603 604
}

// XYNTuples
T
tensor-tang 已提交
605
TEST(JITKernel, kVRelu) {
T
tensor-tang 已提交
606
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
607 608
  TestXYNKernel<jit::kVRelu, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVRelu, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
609 610
}

T
tensor-tang 已提交
611
TEST(JITKernel, kVIdentity) {
T
tensor-tang 已提交
612
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
613 614
  TestXYNKernel<jit::kVIdentity, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVIdentity, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
615 616
}

T
tensor-tang 已提交
617 618 619 620 621 622
TEST(JITKernel, kVSquare) {
  namespace jit = paddle::operators::jit;
  TestXYNKernel<jit::kVSquare, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVSquare, double, paddle::platform::CPUPlace>();
}

T
tensor-tang 已提交
623
TEST(JITKernel, kVExp) {
T
tensor-tang 已提交
624
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
625 626
  TestXYNKernel<jit::kVExp, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVExp, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
627 628
}

T
tensor-tang 已提交
629
TEST(JITKernel, kVSigmoid) {
T
tensor-tang 已提交
630
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
631 632
  TestXYNKernel<jit::kVSigmoid, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVSigmoid, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
633 634
}

T
tensor-tang 已提交
635
TEST(JITKernel, kVTanh) {
T
tensor-tang 已提交
636
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
637 638
  TestXYNKernel<jit::kVTanh, float, paddle::platform::CPUPlace>();
  TestXYNKernel<jit::kVTanh, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
639 640 641
}

// LSTM
T
tensor-tang 已提交
642
TEST(JITKernel, kLSTMCtHt) {
T
tensor-tang 已提交
643
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
644 645
  TestLSTMKernel<jit::kLSTMCtHt, float, paddle::platform::CPUPlace>();
  TestLSTMKernel<jit::kLSTMCtHt, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
646 647
}

T
tensor-tang 已提交
648
TEST(JITKernel, kLSTMC1H1) {
T
tensor-tang 已提交
649
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
650 651
  TestLSTMKernel<jit::kLSTMC1H1, float, paddle::platform::CPUPlace>();
  TestLSTMKernel<jit::kLSTMC1H1, double, paddle::platform::CPUPlace>();
T
tensor-tang 已提交
652 653 654
}

// GRU
T
tensor-tang 已提交
655
TEST(JITKernel, kGRUH1) {
656
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
657 658
  TestGRUKernel<jit::kGRUH1, float, paddle::platform::CPUPlace>();
  TestGRUKernel<jit::kGRUH1, double, paddle::platform::CPUPlace>();
659 660
}

T
tensor-tang 已提交
661
TEST(JITKernel, kGRUHtPart1) {
662
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
663 664
  TestGRUKernel<jit::kGRUHtPart1, float, paddle::platform::CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart1, double, paddle::platform::CPUPlace>();
665 666
}

T
tensor-tang 已提交
667
TEST(JITKernel, kGRUHtPart2) {
668
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
669 670
  TestGRUKernel<jit::kGRUHtPart2, float, paddle::platform::CPUPlace>();
  TestGRUKernel<jit::kGRUHtPart2, double, paddle::platform::CPUPlace>();
671 672
}

673 674 675 676 677 678
TEST(JITKernel, kSeqPool) {
  namespace jit = paddle::operators::jit;
  TestSeqPoolKernel<jit::kSeqPool, float, paddle::platform::CPUPlace>();
  TestSeqPoolKernel<jit::kSeqPool, double, paddle::platform::CPUPlace>();
}

T
tensor-tang 已提交
679 680 681 682 683 684
TEST(JITKernel, kMatMul) {
  namespace jit = paddle::operators::jit;
  TestMatMulKernel<jit::kMatMul, float, paddle::platform::CPUPlace>();
  TestMatMulKernel<jit::kMatMul, double, paddle::platform::CPUPlace>();
}

T
tensor-tang 已提交
685
TEST(JITKernel, kNCHW16CMulNC) {
T
tensor-tang 已提交
686
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
687
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, float,
T
tensor-tang 已提交
688
                         paddle::platform::CPUPlace>();
T
tensor-tang 已提交
689
  TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, double,
T
tensor-tang 已提交
690 691 692
                         paddle::platform::CPUPlace>();
}

693
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
T
tensor-tang 已提交
694

695 696 697
TEST(JITKernel, pool) {
  // TODO(TJ): add some test
}