prune.py 15.0 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
19 20 21 22 23 24 25
import os, sys

# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

W
whs 已提交
26 27 28 29 30 31
import time
import numpy as np
import datetime
from collections import deque
from paddleslim.prune import Pruner
from paddleslim.analysis import flops
32
import paddle
W
whs 已提交
33
from paddle import fluid
Q
qingqing01 已提交
34

W
whs 已提交
35 36 37 38 39 40 41
from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
42
from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
W
whs 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
63
    check_config(cfg)
W
whs 已提交
64 65 66 67
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()
68 69

    main_arch = cfg.architecture
W
whs 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)
                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.print_params:
116 117
        param_delimit_str = '-' * 20 + "All parameters in current graph" + '-' * 20
        print(param_delimit_str)
W
whs 已提交
118 119
        for block in train_prog.blocks:
            for param in block.all_parameters():
120 121 122
                print("parameter name: {}\tshape: {}".format(param.name,
                                                             param.shape))
        print('-' * len(param_delimit_str))
W
whs 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135
        return

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader)
136 137
        # When iterable mode, set set_sample_list_generator(eval_reader, place)
        eval_loader.set_sample_list_generator(eval_reader)
W
whs 已提交
138 139 140 141 142 143

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
K
Kaipeng Deng 已提交
144
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
W
whs 已提交
145
        if cfg.metric == 'WIDERFACE':
K
Kaipeng Deng 已提交
146
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
W
whs 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    start_iter = 0
K
Kaipeng Deng 已提交
174
    if cfg.pretrain_weights:
175
        checkpoint.load_params(exe, train_prog, cfg.pretrain_weights)
W
whs 已提交
176 177

    pruned_params = FLAGS.pruned_params
178 179
    assert FLAGS.pruned_params is not None, \
        "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
W
whs 已提交
180 181
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
182
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
W
whs 已提交
183
    logger.info("pruned ratios: {}".format(pruned_ratios))
184 185 186 187 188
    assert len(pruned_params) == len(pruned_ratios), \
        "The length of pruned params and pruned ratios should be equal."
    assert (pruned_ratios > [0] * len(pruned_ratios) and
            pruned_ratios < [1] * len(pruned_ratios)
            ), "The elements of pruned ratios should be in range (0, 1)."
W
whs 已提交
189

190 191 192
    assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \
            "unsupported prune criterion {}".format(FLAGS.prune_criterion)
    pruner = Pruner(criterion=FLAGS.prune_criterion)
W
whs 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    train_prog = pruner.prune(
        train_prog,
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=False)[0]

    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:

        base_flops = flops(eval_prog)
        eval_prog = pruner.prune(
            eval_prog,
            fluid.global_scope(),
            params=pruned_params,
            ratios=pruned_ratios,
            place=place,
            only_graph=True)[0]
        pruned_flops = flops(eval_prog)
217 218 219
        logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format(
            float(base_flops - pruned_flops) / base_flops, base_flops,
            pruned_flops))
220
        compiled_eval_prog = fluid.CompiledProgram(eval_prog)
W
whs 已提交
221

K
Kaipeng Deng 已提交
222 223 224 225
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()

W
whs 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238
    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

239
    train_stats = TrainingStats(cfg.log_iter, train_keys)
W
whs 已提交
240 241 242 243 244 245
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
246
    time_stat = deque(maxlen=cfg.log_iter)
W
whs 已提交
247 248
    best_box_ap_list = [0.0, 0]  #[map, iter]

走神的阿圆's avatar
走神的阿圆 已提交
249 250 251 252 253 254
    # use VisualDL to log data
    if FLAGS.use_vdl:
        from visualdl import LogWriter
        vdl_writer = LogWriter(FLAGS.vdl_log_dir)
        vdl_loss_step = 0
        vdl_mAP_step = 0
W
whs 已提交
255 256 257

    if FLAGS.eval:
        resolution = None
258
        if 'Mask' in cfg.architecture:
W
whs 已提交
259
            resolution = model.mask_head.resolution
260 261 262 263 264 265 266 267 268 269
        # evaluation
        results = eval_run(
            exe,
            compiled_eval_prog,
            eval_loader,
            eval_keys,
            eval_values,
            eval_cls,
            cfg,
            resolution=resolution)
W
whs 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        dataset = cfg['EvalReader']['dataset']
        box_ap_stats = eval_results(
            results,
            cfg.metric,
            cfg.num_classes,
            resolution,
            is_bbox_normalized,
            FLAGS.output_eval,
            map_type,
            dataset=dataset)

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

走神的阿圆's avatar
走神的阿圆 已提交
291 292
        # use VisualDL to log loss
        if FLAGS.use_vdl:
W
whs 已提交
293 294
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
走神的阿圆's avatar
走神的阿圆 已提交
295 296
                    vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step)
                vdl_loss_step += 1
W
whs 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
W
whs 已提交
312 313 314
                resolution = None
                if 'Mask' in cfg.architecture:
                    resolution = model.mask_head.resolution
315 316 317 318 319 320 321
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
W
whs 已提交
322 323
                    cfg=cfg,
                    resolution=resolution)
W
whs 已提交
324
                box_ap_stats = eval_results(
K
Kaipeng Deng 已提交
325 326 327 328 329 330 331 332
                    results,
                    cfg.metric,
                    cfg.num_classes,
                    resolution,
                    is_bbox_normalized,
                    FLAGS.output_eval,
                    map_type,
                    dataset=dataset)
W
whs 已提交
333

走神的阿圆's avatar
走神的阿圆 已提交
334 335 336 337
                # use VisualDL to log mAP
                if FLAGS.use_vdl:
                    vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step)
                    vdl_mAP_step += 1
W
whs 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

    train_loader.reset()


if __name__ == '__main__':
351
    enable_static_mode()
W
whs 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
走神的阿圆's avatar
走神的阿圆 已提交
380
        "--use_vdl",
W
whs 已提交
381 382
        type=bool,
        default=False,
走神的阿圆's avatar
走神的阿圆 已提交
383
        help="whether to record the data to VisualDL.")
W
whs 已提交
384
    parser.add_argument(
走神的阿圆's avatar
走神的阿圆 已提交
385
        '--vdl_log_dir',
W
whs 已提交
386
        type=str,
走神的阿圆's avatar
走神的阿圆 已提交
387 388
        default="vdl_log_dir/scalar",
        help='VisualDL logging directory for scalar.')
W
whs 已提交
389 390 391 392 393 394 395 396 397

    parser.add_argument(
        "-p",
        "--pruned_params",
        default=None,
        type=str,
        help="The parameters to be pruned when calculating sensitivities.")
    parser.add_argument(
        "--pruned_ratios",
398
        default=None,
W
whs 已提交
399
        type=str,
400 401
        help="The ratios pruned iteratively for each parameter when calculating sensitivities."
    )
W
whs 已提交
402 403 404 405 406 407
    parser.add_argument(
        "-P",
        "--print_params",
        default=False,
        action='store_true',
        help="Whether to only print the parameters' names and shapes.")
408 409 410 411 412 413
    parser.add_argument(
        "--prune_criterion",
        default='l1_norm',
        type=str,
        help="criterion function type for channels sorting in pruning, can be set " \
             "as 'l1_norm' or 'geometry_median' currently, default 'l1_norm'")
W
whs 已提交
414 415
    FLAGS = parser.parse_args()
    main()