selected_rows_functor.cu 16.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
typhoonzero 已提交
15
#include <set>
16
#include <vector>
T
typhoonzero 已提交
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
D
dzhwinter 已提交
20
#include "paddle/fluid/platform/cuda_primitives.h"
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
26 27
struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
28 29 30 31 32 33 34
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

D
dzhwinter 已提交
35
    framework::Vector<int64_t> in1_rows(input1.rows());
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));
    auto out_place = context.GetPlace();
    PADDLE_ENFORCE(platform::is_gpu_place(out_place));

63 64 65
    memory::Copy(boost::get<platform::CUDAPlace>(out_place), out_data,
                 boost::get<platform::CUDAPlace>(in1_place), in1_data,
                 in1_value.numel() * sizeof(T), context.stream());
66 67

    auto* in2_data = in2_value.data<T>();
D
dzhwinter 已提交
68
    memory::Copy(boost::get<platform::CUDAPlace>(out_place),
Q
QI JUN 已提交
69
                 out_data + in1_value.numel(),
D
dzhwinter 已提交
70
                 boost::get<platform::CUDAPlace>(in2_place), in2_data,
Q
QI JUN 已提交
71
                 in2_value.numel() * sizeof(T), context.stream());
72 73 74
  }
};

Q
QI JUN 已提交
75 76
template struct SelectedRowsAdd<platform::CUDADeviceContext, float>;
template struct SelectedRowsAdd<platform::CUDADeviceContext, double>;
77 78

namespace {
Q
QI JUN 已提交
79
template <typename T, int block_size>
80 81
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows, T* tensor_out,
Q
QI JUN 已提交
82
                                            int64_t row_numel) {
83 84 85 86 87 88 89 90 91 92
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
Q
qijun 已提交
93
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
94 95 96 97 98
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
99 100
struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
101 102 103 104 105 106 107 108 109
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
110
    auto& in1_rows = input1.rows();
111 112 113 114 115 116 117 118 119

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

Q
QI JUN 已提交
120
    SetConstant<platform::CUDADeviceContext, T> functor;
121
    functor(context, output, 0.0);
122

Q
QI JUN 已提交
123
    const int block_size = 256;
124
    dim3 threads(block_size, 1);
Q
qijun 已提交
125
    dim3 grid(1, in1_rows.size());
Q
QI JUN 已提交
126 127
    SelectedRowsAddTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
128 129
        in1_data, in1_rows.CUDAData(context.GetPlace()), out_data,
        in1_row_numel);
130 131 132

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
133
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
134 135 136
  }
};

Q
QI JUN 已提交
137 138
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, double>;
Q
QI JUN 已提交
139 140

template <typename T>
Q
QI JUN 已提交
141 142
struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
143 144 145 146 147 148
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2->height());

149
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
150 151 152 153 154 155
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Fix CI  
Yu Yang 已提交
156 157 158
    if (in1_rows.size()) {
      in2_rows.Extend(in1_rows.begin(), in1_rows.end());
    }
Q
QI JUN 已提交
159 160 161 162 163 164 165 166

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2->place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
D
dzhwinter 已提交
167
    memory::Copy(boost::get<platform::CUDAPlace>(in2_place),
Q
QI JUN 已提交
168
                 in2_data + input2_offset,
D
dzhwinter 已提交
169
                 boost::get<platform::CUDAPlace>(in1_place), in1_data,
Q
QI JUN 已提交
170
                 in1_value.numel() * sizeof(T), context.stream());
Q
QI JUN 已提交
171 172 173
  }
};

Q
QI JUN 已提交
174 175 176 177
template struct SelectedRowsAddTo<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int64_t>;
Q
QI JUN 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

namespace {
template <typename T, int block_size>
__global__ void SelectedRowsAddToTensorKernel(const T* selected_rows,
                                              const int64_t* rows,
                                              T* tensor_out,
                                              int64_t row_numel) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
200 201
struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
202 203 204 205 206 207 208
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
209
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
210 211 212 213 214 215 216 217 218

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2->data<T>();
    const int block_size = 256;
    dim3 threads(block_size, 1);
    dim3 grid(1, in1_rows.size());
Q
QI JUN 已提交
219 220
    SelectedRowsAddToTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
221 222
        in1_data, in1_rows.CUDAData(context.GetPlace()), in2_data,
        in1_row_numel);
Q
QI JUN 已提交
223 224 225
  }
};

Q
QI JUN 已提交
226 227 228 229
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int64_t>;
T
typhoonzero 已提交
230 231 232 233 234 235 236

namespace scatter {

template <typename T, int block_size>
__global__ void MergeAddKernel(const T* input, const int64_t* input_rows,
                               T* out, const int64_t* out_rows,
                               size_t out_rows_size, int64_t row_numel) {
S
sneaxiy 已提交
237
  const int ty = blockIdx.x;
T
typhoonzero 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  int tid = threadIdx.x;
  __shared__ size_t out_idx;

  if (tid == 0) {
    for (size_t i = 0; i < out_rows_size; i++) {
      if (input_rows[ty] == out_rows[i]) {
        out_idx = i;
      }
    }
  }

  __syncthreads();

  input += ty * row_numel;
  out += out_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(out + index, input[index]);
  }
}

template <typename T>
T
typhoonzero 已提交
259 260
struct MergeAdd<platform::CUDADeviceContext, T> {
  framework::SelectedRows operator()(const platform::CUDADeviceContext& context,
T
wip  
typhoonzero 已提交
261 262
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
S
sneaxiy 已提交
263 264 265 266 267 268 269
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
D
dzhwinter 已提交
270
    framework::Vector<int64_t> input_rows(input.rows());
Q
Qiao Longfei 已提交
271 272 273 274 275
    if (input_rows.size() == 0) {
      return;
    }

    framework::SelectedRows& out = *output;
T
typhoonzero 已提交
276
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
Q
Qiao Longfei 已提交
277 278
    std::vector<int64_t> merge_rows_cpu(row_set.begin(), row_set.end());
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
T
typhoonzero 已提交
279 280

    auto input_width = input.value().dims()[1];
T
wip  
typhoonzero 已提交
281 282 283 284

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
285 286 287 288 289
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
290
    constant_functor(context, out.mutable_value(), 0.0);
T
typhoonzero 已提交
291

T
wip  
typhoonzero 已提交
292
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
293 294 295 296
    auto* input_data = input.value().data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
S
sneaxiy 已提交
297
    dim3 grid1(input_rows.size(), 1);
T
typhoonzero 已提交
298

S
sneaxiy 已提交
299
    MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
300 301 302
        input_data, input_rows.CUDAData(context.GetPlace()), out_data,
        out.mutable_rows()->CUDAMutableData(context.GetPlace()),
        out.rows().size(), input_width);
T
typhoonzero 已提交
303
  }
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

  void operator()(const platform::CUDADeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    PADDLE_ENFORCE_GT(inputs.size(), 0, "should have at least one input");
    auto input_width = inputs[0]->value().dims()[1];
    auto input_height = inputs[0]->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    for (auto* input : inputs) {
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        "all input should have same "
                        "dimension except for the first one");
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        "all input should have same height");
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
Q
Qiao Longfei 已提交
321
    std::vector<int64_t> merge_rows_cpu(merged_row_set.begin(),
Q
format  
Qiao Longfei 已提交
322
                                        merged_row_set.end());
Q
Qiao Longfei 已提交
323
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
324 325 326 327 328 329 330 331

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

Q
Qiao Longfei 已提交
332
    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
333 334 335 336 337 338 339 340 341 342
    constant_functor(context, out.mutable_value(), 0.0);

    auto* out_data = out.mutable_value()->data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);

    for (auto* input : inputs) {
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();
Q
Qiao Longfei 已提交
343 344 345
      if (input_rows.size() == 0) {
        continue;
      }
346 347 348 349 350 351 352 353
      dim3 grid1(input_rows.size(), 1);

      MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
          input_data, input_rows.CUDAData(context.GetPlace()), out_data,
          out.mutable_rows()->CUDAMutableData(context.GetPlace()),
          out.rows().size(), input_width);
    }
  }
T
typhoonzero 已提交
354 355
};

T
typhoonzero 已提交
356 357 358 359
template struct MergeAdd<platform::CUDADeviceContext, float>;
template struct MergeAdd<platform::CUDADeviceContext, double>;
template struct MergeAdd<platform::CUDADeviceContext, int>;
template struct MergeAdd<platform::CUDADeviceContext, int64_t>;
T
wip  
typhoonzero 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

template <typename T, int block_size>
__global__ void UpdateToTensorKernel(const T* selected_rows,
                                     const int64_t* rows, const ScatterOps& op,
                                     T* tensor_out, int64_t row_numel) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;
  // FIXME(typhoonzero): use macro fix the below messy code.
  switch (op) {
    case ScatterOps::ASSIGN:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index];
      }
      break;
    case ScatterOps::ADD:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] += selected_rows[index];
      }
      break;
    case ScatterOps::SUB:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] -= selected_rows[index];
      }
      break;
    case ScatterOps::SUBBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] - tensor_out[index];
      }
      break;
    case ScatterOps::MUL:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] *= selected_rows[index];
      }
      break;
    case ScatterOps::DIV:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] /= selected_rows[index];
      }
      break;
    case ScatterOps::DIVBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] / tensor_out[index];
      }
      break;
  }
}

template <typename T>
T
typhoonzero 已提交
411 412 413 414
struct UpdateToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
415 416
    // NOTE: Use SelectedRowsAddToTensor for better performance
    //       no additional MergeAdd called.
T
typhoonzero 已提交
417 418
    MergeAdd<platform::CUDADeviceContext, T> merge_func;
    auto merged_in1 = merge_func(context, input1);
T
wip  
typhoonzero 已提交
419 420 421 422 423 424 425 426 427 428 429

    auto in1_height = merged_in1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = merged_in1.value();
    auto& in1_rows = merged_in1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

T
typhoonzero 已提交
430 431
    auto* in1_data = in1_value.template data<T>();
    auto* in2_data = input2->data<T>();
T
wip  
typhoonzero 已提交
432

T
typhoonzero 已提交
433
    dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1);
T
wip  
typhoonzero 已提交
434
    dim3 grid(1, in1_rows.size());
T
typhoonzero 已提交
435
    UpdateToTensorKernel<T, platform::PADDLE_CUDA_NUM_THREADS><<<
D
dzhwinter 已提交
436 437
        grid, threads, 0, context.stream()>>>(in1_data, in1_rows.cuda_data(),
                                              op, in2_data, in1_row_numel);
T
wip  
typhoonzero 已提交
438 439
  }
};
T
typhoonzero 已提交
440
}  // namespace scatter
441 442 443
}  // namespace math
}  // namespace operators
}  // namespace paddle