quantization_pass.py 21.0 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from .... import core
18
from ....framework import IrGraph
19 20
from ....framework import Program
from ....framework import Variable
W
WangZhen 已提交
21 22 23
from ....initializer import Constant
from .... import unique_name

24
__all__ = ['QuantizationTransformPass']
W
WangZhen 已提交
25

W
WangZhen 已提交
26

27
class QuantizationTransformPass(object):
W
WangZhen 已提交
28
    def __init__(self,
29 30
                 scope=None,
                 program_exe=None,
W
WangZhen 已提交
31 32 33 34 35 36
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000):
        """
37
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        activation quantization type.
        Args:
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.
        Examples:
        .. code-block:: python
55 56 57 58
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
59
            from paddle.fluid.contrib.slim.graph import IrGraph
60 61
            from paddle.fluid import core

62
            graph = IrGraph(core.Graph(program.desc), for_test=False)
63 64 65 66
            exe = fluid.Executor(fluid.CPUPlace())
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
            exe)
            transform_pass.apply(graph)
W
WangZhen 已提交
67
        """
68 69 70 71
        self._scope = scope
        self._program_exe = program_exe
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
72 73 74 75 76 77 78 79 80 81 82

        quant_type = ['abs_max', 'range_abs_max']
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(activation_quantize_type))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(weight_quantize_type))

83 84 85
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
W
WangZhen 已提交
86

87 88 89 90
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
91
        ]
92 93
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
94

95
    def apply(self, graph):
W
WangZhen 已提交
96
        assert isinstance(graph,
97 98 99
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
100 101
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
W
WangZhen 已提交
102
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
103 104 105 106 107 108

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
109
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
110 111
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
112
                        in persistable_vars else self._activation_quantize_type
W
WangZhen 已提交
113 114 115 116 117
                    quant_var_node, scale_var_node = self._insert_quant_op(
                        graph, var_node, quant_bits, quant_type)
                    dequant_var_node = self._insert_dequant_op(
                        graph, quant_var_node, scale_var_node, quant_bits)
                    dequantized_vars[var_node.name()] = dequant_var_node
118
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
119 120 121 122 123 124

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
125
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
126 127 128 129
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
130

131
        if not self._is_test:
W
WangZhen 已提交
132 133
            self._create_global_step(graph)
        ops = graph.all_ops()
W
WangZhen 已提交
134 135
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
136
        for op in ops:
137
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
138
                _transform_forward(graph, op)
W
WangZhen 已提交
139 140
        # The loop for renaming the inputs of backward op.
        for op in ops:
141
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
142
                _transform_backward(graph, op)
W
WangZhen 已提交
143

144 145
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
146
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
147
            assert self._program_exe is not None, \
148 149
            'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
            init_program = Program()
150 151 152
            for var_desc, initializer in self._need_initialized.iteritems():
                var = Variable(init_program.global_block())
                var._set_desc(var_desc)
153
                initializer(var, init_program.global_block())
154
            self._program_exe.run(program=init_program, scope=self._scope)
155 156

        return graph
W
WangZhen 已提交
157

W
WangZhen 已提交
158
    def _create_global_step(self, graph):
159 160
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
161 162 163
            counter_name = '@STEP_COUNTER@'
            for node in graph.all_vars():
                if node.name() == counter_name:
164 165
                    self._global_step = node
            if self._global_step is None:
W
WangZhen 已提交
166 167 168 169 170
                global_step_in = graph.create_param_node(
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
171
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
172 173 174 175 176 177 178 179
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
                increment_op = graph.create_op_node(
                    op_type='increment',
                    attrs={'step': 1.0},
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
180 181 182
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
183

W
WangZhen 已提交
184 185 186 187 188 189 190
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
191 192
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
W
WangZhen 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
            attrs={'bit_length': quant_bits},
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
216 217 218
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())

        scale_in_node = graph.create_param_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.var().dtype())
238
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
239 240 241 242 243

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

244
        if not self._is_test:
W
WangZhen 已提交
245 246 247 248
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
            scales_node = graph.create_param_node(
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
249
                shape=[self._window_size],
W
WangZhen 已提交
250
                var_dtype=var_node.var().dtype())
251 252
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
253 254
            outputs['OutScales'] = scales_node
        attrs = {
255
            'window_size': self._window_size,
W
WangZhen 已提交
256
            'bit_length': quant_bits,
257
            'is_test': self._is_test
W
WangZhen 已提交
258 259 260 261 262 263 264
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

265 266 267 268
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
269

270 271 272
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

        return quant_var_node, scale_out_node

    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
            attrs={'max_range': float(max_range)},
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
294 295 296
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
313
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
314 315
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491


class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
                input_arg_name = op_node.op().input('X')[0]
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
                    else:
                        scale_v = self._load_var(op_node.op().output('OutScale')
                                                 [0])[0]
                    self._var_scale_map[input_arg_name] = scale_v
                else:
                    scale_v = graph.var_node(op_node.op().output('OutScale')[0])
                    self._var_scale_map[input_arg_name] = scale_v
                if input_arg_name in persistable_vars:
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
                                                    self.weight_bits)
                    self._restore_var(input_arg_name, quantized_param_v)

        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                self._insert_post_dequant_op(graph, op_node)

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
                    new_in = graph.var_node(self._op_output_rename_map[name])
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
        k = op_node.op().output('Out')[0]
        v = op_node.op().input('X')[0]
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
        graph.save_remove_nodes(op_node)

    def _insert_post_dequant_op(self, graph, op_node):
        max_range = None
        scale_var_node = None
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        for var_node in op_node.op().inputs:
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                scale_v = self._var_scale_map[original_var_name]
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
                assert isinstance(scale_v, core.Node)
                scale_var_node = self._var_scale_map[original_var_name]

        if len(op_node.op().outputs) != 1:
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

        output_var_node = op_node.op().outputs[0]
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.var().type(),
            shape=output_var_node.var().shape(),
            var_dtype=output_var_node.var().dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
            attrs={'max_range': float(max_range)},
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        self._op_output_rename_map[output_var_node.name(
        )] = dequant_var_node.name()
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, arr):
        t = self._scope.find_var(name).get_tensor()
        t.set(arr, self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _is_float(v):
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

    def _quant(x, scale, num_bits):
        return np.round(x / scale * ((1 << (num_bits - 1)) - 1))