sample_logits_op.cc 10.3 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/sample_logits_op.h"
16
#include <memory>
X
xuezhong 已提交
17 18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/operators/math/sample_prob.h"

namespace paddle {
namespace operators {

class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Logits",
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.");
X
xuezhong 已提交
29 30
    AddInput("Labels",
             "(Tensor) The ground truth which is a 2-D tensor. Labels is a "
X
xuezhong 已提交
31 32
             "Tensor<int64> with shape [N x NT], where NT is the number of"
             "true labels for each example.");
X
xuezhong 已提交
33 34 35 36 37 38 39 40 41
    AddInput("CustomizedSamples",
             "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
             "NT + S],"
             " where N is the batch size, NT is the number of true labels "
             "and S is the number of negtive sample for each example."
             "The first NT elements of each row should be the same with true "
             "labels, "
             "followed by S custom negtive samples. This tensor"
             "is only used when use_customized_samples is true.")
X
xuezhong 已提交
42 43
        .AsDispensable();
    AddInput(
X
xuezhong 已提交
44 45 46 47 48 49
        "CustomizedProbabilities",
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
        "The tensor has the same shape with CustomSamples,"
        "and each element represents probability of element in CustomSamples. "
        "This "
        "tensor is only used when use_customized_samples is true.")
X
xuezhong 已提交
50
        .AsDispensable();
X
xuezhong 已提交
51 52 53 54 55 56 57
    AddOutput("Samples",
              "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
              "NT + S]."
              "The outputs value of sampler, including NT true lables and S "
              "negetive samples "
              "for each example. This will be used in"
              "backward calculation.")
X
xuezhong 已提交
58 59 60
        .AsIntermediate();
    AddOutput(
        "Probabilities",
X
xuezhong 已提交
61 62
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
        "The probabilites of sampled positive and negtive labels.")
X
xuezhong 已提交
63
        .AsIntermediate();
64 65 66 67
    AddOutput("LogitsDim", "Store dim information of Logits for gradient op")
        .AsIntermediate();
    AddOutput("LabelsDim", "Store dim information of Logits for gradient op")
        .AsIntermediate();
X
xuezhong 已提交
68 69
    AddOutput("SampledLogits",
              "(Tensor, default: Tensor<float>), A 2-D tensor with shape"
X
xuezhong 已提交
70 71
              "[N, NT + S]. The outputs value of sampled logits, which will be"
              "used in backward propagation.")
X
xuezhong 已提交
72
        .AsIntermediate();
X
xuezhong 已提交
73
    AddOutput(
X
xuezhong 已提交
74 75 76
        "SampledLabels",
        "(Tensor, default: Tensor<int64>), A 2-D tensor. The sampled labels"
        "with shape [N, NT]. The tonsor contains hard labels as input to "
X
xuezhong 已提交
77
        " softmax op, that is 0, 1, ..., NT-1 because of the first NT elements"
X
xuezhong 已提交
78
        " of Sampels are positive lables.");
X
xuezhong 已提交
79
    AddAttr<bool>(
X
xuezhong 已提交
80 81 82 83
        "use_customized_samples",
        "An indicator whether to use customized samples with probabilities, if "
        "True"
        "the operator will use customized samples and customized probabilities"
X
xuezhong 已提交
84 85 86 87 88 89
        "otherwise, the operator will generate them by itself.")
        .SetDefault(false);
    AddAttr<bool>(
        "uniq",
        "An indicator whether to sample non-repetitive negtive labels, if True"
        "the operator will sample negtive labels without replacement."
X
xuezhong 已提交
90
        "Otherwise, the operator will sample negtive labels with replacement.")
X
xuezhong 已提交
91
        .SetDefault(true);
X
xuezhong 已提交
92 93 94 95 96 97 98 99 100 101
    AddAttr<bool>(
        "remove_accidental_hits",
        "An indicator whether to remove accidental hits when samples hits true"
        "labels, the removal is implemented by subtracting the corresponding"
        "logits by float_max to subpress their softmax to be zero.")
        .SetDefault(true);
    AddAttr<int>("num_samples", "The number of negative samples.");
    AddAttr<int>("seed", "Random seed for generating samples").SetDefault(0);

    AddComment(R"DOC(
X
xuezhong 已提交
102 103
  """
  Computes sampled output training logits and labels suitable for implementing
X
xuezhong 已提交
104
  sampled softmax.        
X
xuezhong 已提交
105
  """
X
xuezhong 已提交
106 107 108 109 110 111 112 113 114 115 116 117

)DOC");
  }
};

class SampleLogitsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
X
xuezhong 已提交
118 119
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should be not null.");
X
xuezhong 已提交
120 121 122 123 124 125 126

    PADDLE_ENFORCE(ctx->HasOutput("Samples"),
                   "Output(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Probabilities"),
                   "Output(Probabilities) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"),
                   "Output(SampledLogits) should be not null.");
X
xuezhong 已提交
127 128
    PADDLE_ENFORCE(ctx->HasOutput("SampledLabels"),
                   "Output(SampledLabels) should be not null.");
129 130 131 132
    PADDLE_ENFORCE(ctx->HasOutput("LogitsDim"),
                   "Output(LogitsDim) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("LabelsDim"),
                   "Output(LabelsDim) should be not null.");
X
xuezhong 已提交
133 134

    auto logits_dims = ctx->GetInputDim("Logits");
X
xuezhong 已提交
135
    auto labels_dims = ctx->GetInputDim("Labels");
X
xuezhong 已提交
136 137 138 139 140 141 142 143 144 145 146 147

    PADDLE_ENFORCE_EQ(
        logits_dims.size(), 2UL,
        "The logits of softmax_with_cross_entropy should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
                      "The labels should be a 2-D tensor.");

    const int num_samples = ctx->Attrs().Get<int>("num_samples");
    const int num_sampled_classes = labels_dims[1] + num_samples;
    ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes});
X
xuezhong 已提交
148
    ctx->SetOutputDim("SampledLabels", {logits_dims[0], labels_dims[1]});
149 150 151 152 153 154 155 156 157

    // append 0 to shape variable to avoid optimized by memory optimize pass
    auto logits_dim_vec = framework::vectorize(logits_dims);
    logits_dim_vec.push_back(0);
    ctx->SetOutputDim("LogitsDim", framework::make_ddim(logits_dim_vec));

    auto labels_dim_vec = framework::vectorize(labels_dims);
    labels_dim_vec.push_back(0);
    ctx->SetOutputDim("LabelsDim", framework::make_ddim(labels_dim_vec));
X
xuezhong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Logits"));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    return kt;
  }
};

// UNDERSTAND: InferShape for Grad
class SampleLogitsOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
176 177 178 179
    PADDLE_ENFORCE(ctx->HasInput("LogitsDim"),
                   "Input(LogitsDim) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LabelsDim"),
                   "Input(LabelsDim) should be not null.");
X
xuezhong 已提交
180 181 182 183 184 185 186
    PADDLE_ENFORCE(ctx->HasInput("Samples"),
                   "Input(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")),
                   "Input(SampledLogits@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

187 188 189 190 191
    auto logits_dims = ctx->GetInputDim("LogitsDim");
    logits_dims = framework::DDim(logits_dims.Get(), logits_dims.size() - 1);
    auto labels_dims = ctx->GetInputDim("LabelsDim");
    labels_dims = framework::DDim(labels_dims.Get(), labels_dims.size() - 1);
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
X
xuezhong 已提交
192
                      "The label should be a 2-D tensor.");
193
    PADDLE_ENFORCE_EQ(logits_dims.size(), 2UL,
X
xuezhong 已提交
194 195
                      "The logits should be a 2-D tensor.");

196
    ctx->SetOutputDim(framework::GradVarName("Logits"), logits_dims);
X
xuezhong 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("SampledLogits")));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    return kt;
  }
};

// UNDERSTAND: what's the rule for making a GradMaker TODO
class SampleLogitsGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
    grad_op->SetType("sample_logits_grad");
219 220
    grad_op->SetInput("LogitsDim", Output("LogitsDim"));
    grad_op->SetInput("LabelsDim", Output("LabelsDim"));
X
xuezhong 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    grad_op->SetInput("Samples", Output("Samples"));
    grad_op->SetInput(framework::GradVarName("SampledLogits"),
                      OutputGrad("SampledLogits"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker,
                  ops::SampleLogitsGradMaker);
REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad);
REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel<float>,
                       ops::SampleLogitsKernel<double>);
REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel<float>,
                       ops::SampleLogitsGradKernel<double>);