inference_benchmark.py 12.7 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import six
import glob
import time
import yaml
import argparse
import cv2
import numpy as np

import paddle
import paddle.version as paddle_version
from paddle.inference import Config, create_predictor, PrecisionType, get_trt_runtime_version

TUNED_TRT_DYNAMIC_MODELS = {'DETR'}

35

W
wangxinxin08 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
def check_version(version='2.2'):
    err = "PaddlePaddle version {} or higher is required, " \
          "or a suitable develop version is satisfied as well. \n" \
          "Please make sure the version is good with your code.".format(version)

    version_installed = [
        paddle_version.major, paddle_version.minor, paddle_version.patch,
        paddle_version.rc
    ]

    if version_installed == ['0', '0', '0', '0']:
        return

49 50 51
    if version == 'develop':
        raise Exception("PaddlePaddle develop version is required!")

W
wangxinxin08 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    version_split = version.split('.')

    length = min(len(version_installed), len(version_split))
    for i in six.moves.range(length):
        if version_installed[i] > version_split[i]:
            return
        if version_installed[i] < version_split[i]:
            raise Exception(err)


def check_trt_version(version='8.2'):
    err = "TensorRT version {} or higher is required," \
          "Please make sure the version is good with your code.".format(version)
    version_split = list(map(int, version.split('.')))
    version_installed = get_trt_runtime_version()
    length = min(len(version_installed), len(version_split))
    for i in six.moves.range(length):
        if version_installed[i] > version_split[i]:
            return
        if version_installed[i] < version_split[i]:
            raise Exception(err)


# preprocess ops
def decode_image(im_file, im_info):
    if isinstance(im_file, str):
        with open(im_file, 'rb') as f:
            im_read = f.read()
        data = np.frombuffer(im_read, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    else:
        im = im_file
    im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
    im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32)
    return im, im_info


90
class Resize(object):
W
wangxinxin08 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.keep_ratio = keep_ratio
        self.interp = interp

    def __call__(self, im, im_info):
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, im):
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.keep_ratio:
            im_size_min = np.min(origin_shape)
            im_size_max = np.max(origin_shape)
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
            im_scale = float(target_size_min) / float(im_size_min)
            if np.round(im_scale * im_size_max) > target_size_max:
                im_scale = float(target_size_max) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / float(origin_shape[0])
            im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x


135
class Permute(object):
W
wangxinxin08 已提交
136 137 138 139 140 141 142
    def __init__(self, ):
        super(Permute, self).__init__()

    def __call__(self, im, im_info):
        im = im.transpose((2, 0, 1))
        return im, im_info

143

W
wangxinxin08 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
class NormalizeImage(object):
    def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.norm_type = norm_type

    def __call__(self, im, im_info):
        im = im.astype(np.float32, copy=False)
        if self.is_scale:
            scale = 1.0 / 255.0
            im *= scale

        if self.norm_type == 'mean_std':
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            im -= mean
            im /= std
        return im, im_info


class PadStride(object):
    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        coarsest_stride = self.coarsest_stride
        if coarsest_stride <= 0:
            return im, im_info
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        return padding_im, im_info


def preprocess(im, preprocess_ops):
    # process image by preprocess_ops
    im_info = {
        'scale_factor': np.array(
            [1., 1.], dtype=np.float32),
        'im_shape': None,
    }
    im, im_info = decode_image(im, im_info)
    for operator in preprocess_ops:
        im, im_info = operator(im, im_info)
    return im, im_info


def parse_args():
    parser = argparse.ArgumentParser()
196 197 198 199
    parser.add_argument(
        '--model_dir', type=str, help='directory of inference model')
    parser.add_argument(
        '--run_mode', type=str, default='paddle', help='running mode')
W
wangxinxin08 已提交
200
    parser.add_argument('--batch_size', type=int, default=1, help='batch size')
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    parser.add_argument(
        '--image_dir',
        type=str,
        default='/paddle/data/DOTA_1024_ss/test1024/images',
        help='directory of test images')
    parser.add_argument(
        '--warmup_iter', type=int, default=5, help='num of warmup iters')
    parser.add_argument(
        '--total_iter', type=int, default=2000, help='num of total iters')
    parser.add_argument(
        '--log_iter', type=int, default=50, help='num of log interval')
    parser.add_argument(
        '--tuned_trt_shape_file',
        type=str,
        default='shape_range_info.pbtxt',
        help='dynamic shape range info')
W
wangxinxin08 已提交
217 218 219 220 221 222 223 224 225
    args = parser.parse_args()
    return args


def init_predictor(FLAGS):
    model_dir, run_mode, batch_size = FLAGS.model_dir, FLAGS.run_mode, FLAGS.batch_size
    yaml_file = os.path.join(model_dir, 'infer_cfg.yml')
    with open(yaml_file) as f:
        yml_conf = yaml.safe_load(f)
226

W
wangxinxin08 已提交
227 228 229
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
230

W
wangxinxin08 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    # initial GPU memory(M), device ID
    config.enable_use_gpu(200, 0)
    # optimize graph and fuse op
    config.switch_ir_optim(True)

    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }

    arch = yml_conf['arch']
    tuned_trt_shape_file = os.path.join(model_dir, FLAGS.tuned_trt_shape_file)

    if run_mode in precision_map.keys():
246 247 248 249 250
        if arch in TUNED_TRT_DYNAMIC_MODELS and not os.path.exists(
                tuned_trt_shape_file):
            print(
                'dynamic shape range info is saved in {}. After that, rerun the code'.
                format(tuned_trt_shape_file))
W
wangxinxin08 已提交
251 252 253 254 255 256 257 258 259 260
            config.collect_shape_range_info(tuned_trt_shape_file)
        config.enable_tensorrt_engine(
            workspace_size=(1 << 25) * batch_size,
            max_batch_size=batch_size,
            min_subgraph_size=yml_conf['min_subgraph_size'],
            precision_mode=precision_map[run_mode],
            use_static=True,
            use_calib_mode=False)

        if yml_conf['use_dynamic_shape']:
261 262 263 264
            if arch in TUNED_TRT_DYNAMIC_MODELS and os.path.exists(
                    tuned_trt_shape_file):
                config.enable_tuned_tensorrt_dynamic_shape(tuned_trt_shape_file,
                                                           True)
W
wangxinxin08 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
            else:
                min_input_shape = {
                    'image': [batch_size, 3, 640, 640],
                    'scale_factor': [batch_size, 2]
                }
                max_input_shape = {
                    'image': [batch_size, 3, 1280, 1280],
                    'scale_factor': [batch_size, 2]
                }
                opt_input_shape = {
                    'image': [batch_size, 3, 1024, 1024],
                    'scale_factor': [batch_size, 2]
                }
278 279 280
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)

W
wangxinxin08 已提交
281 282 283 284 285 286 287 288 289
    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
    return predictor, yml_conf

290

W
wangxinxin08 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
def create_preprocess_ops(yml_conf):
    preprocess_ops = []
    for op_info in yml_conf['Preprocess']:
        new_op_info = op_info.copy()
        op_type = new_op_info.pop('type')
        preprocess_ops.append(eval(op_type)(**new_op_info))
    return preprocess_ops


def get_test_images(image_dir):
    images = set()
    infer_dir = os.path.abspath(image_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)
    return images


def create_inputs(image_files, preprocess_ops):
    inputs = dict()
    im_list, im_info_list = [], []
    for im_path in image_files:
        im, im_info = preprocess(im_path, preprocess_ops)
        im_list.append(im)
        im_info_list.append(im_info)

319 320 321 322
    inputs['im_shape'] = np.stack(
        [e['im_shape'] for e in im_info_list], axis=0).astype('float32')
    inputs['scale_factor'] = np.stack(
        [e['scale_factor'] for e in im_info_list], axis=0).astype('float32')
W
wangxinxin08 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    inputs['image'] = np.stack(im_list, axis=0).astype('float32')
    return inputs


def measure_speed(FLAGS):
    predictor, yml_conf = init_predictor(FLAGS)
    input_names = predictor.get_input_names()
    preprocess_ops = create_preprocess_ops(yml_conf)

    image_files = get_test_images(FLAGS.image_dir)

    batch_size = FLAGS.batch_size
    warmup_iter, log_iter, total_iter = FLAGS.warmup_iter, FLAGS.log_iter, FLAGS.total_iter

    total_time = 0
    fps = 0
    for i in range(0, total_iter, batch_size):
        # make data ready
        inputs = create_inputs(image_files[i:i + batch_size], preprocess_ops)
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
            input_tensor.copy_from_cpu(inputs[name])
345

W
wangxinxin08 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        paddle.device.cuda.synchronize()
        # start running
        start_time = time.perf_counter()
        predictor.run()
        paddle.device.cuda.synchronize()

        if i >= warmup_iter:
            total_time += time.perf_counter() - start_time
            if (i + 1) % log_iter == 0:
                fps = (i + 1 - warmup_iter) / total_time
                print(
                    f'Done image [{i + 1:<3}/ {total_iter}], '
                    f'fps: {fps:.1f} img / s, '
                    f'times per image: {1000 / fps:.1f} ms / img',
                    flush=True)
361

W
wangxinxin08 已提交
362 363 364 365 366 367 368 369
        if (i + 1) == total_iter:
            fps = (i + 1 - warmup_iter) / total_time
            print(
                f'Overall fps: {fps:.1f} img / s, '
                f'times per image: {1000 / fps:.1f} ms / img',
                flush=True)
            break

370

W
wangxinxin08 已提交
371 372
if __name__ == '__main__':
    FLAGS = parse_args()
373
    if 'trt' in FLAGS.run_mode:
374
        check_version('develop')
375
        check_trt_version('8.2')
376 377
    else:
        check_version('2.4')
W
wangxinxin08 已提交
378
    measure_speed(FLAGS)