CudnnBatchNormLayer.cpp 4.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Stat.h"
#include "Layer.h"
#include "CudnnBatchNormLayer.h"

namespace paddle {

REGISTER_LAYER(cudnn_batch_norm, CudnnBatchNormLayer);

const double CudnnBatchNormLayer::EPS = 1E-5;

bool CudnnBatchNormLayer::init(const LayerMap& layerMap,
                               const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  if (!BatchNormBaseLayer::init(layerMap, parameterMap)) return false;
  CHECK(useGpu_) << "CudnnBatchNorm only support GPU";

  hl_create_tensor_descriptor(&ioDesc_);
  hl_create_tensor_descriptor(&bnParamDesc_);
  hl_tensor_reshape(bnParamDesc_, 1, channels_, 1, 1);

  return true;
}

void CudnnBatchNormLayer::reshape(int batchSize) {
  hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_, imageW_);
}

void CudnnBatchNormLayer::forward(PassType passType) {
  Layer::forward(passType);

  int batchSize = getInputValue(0)->getHeight();
  calFeatureMapSize();
  reshape(batchSize);
  resetOutput(batchSize, getInputValue(0)->getWidth());

  // for testing in training peroid.
  useGlobalStats_ = (passType == PASS_TEST);
  if (passType == PASS_TEST && config_.has_use_global_stats()) {
    useGlobalStats_ = config_.use_global_stats();
  }

  real* input = getInputValue(0)->getData();
  real* output = getOutputValue()->getData();
  real* gamma = weight_->getW()->getData();
  real* beta = biases_->getW()->getData();
  real* movingMean = movingMean_->getW()->getData();
  real* movingVar = movingVar_->getW()->getData();

  if (!useGlobalStats_) {
    REGISTER_TIMER_INFO("CudnnBatchFwTimer", getName().c_str());
    real* savedMean = savedMean_->getData();
    real* savedInvVar = savedInvVar_->getData();
    hl_batch_norm_forward_training(ioDesc_, input, ioDesc_, output,
                                   bnParamDesc_,
                                   gamma, beta, 1.0 - movingAvgFraction_,
                                   movingMean, movingVar,
                                   EPS, savedMean, savedInvVar);
  } else {
    // used movingMean and movingVar in testing
    hl_batch_norm_forward_inference(ioDesc_, input, ioDesc_, output,
                                    bnParamDesc_, gamma, beta,
                                    movingMean, movingVar, EPS);
  }

  /* activation */ {
    REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
    forwardActivation();
  }
}

void CudnnBatchNormLayer::backward(const UpdateCallback& callback) {
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
    backwardActivation();
  }

  real* input = getInputValue(0)->getData();
  real* outGrad = getOutputGrad()->getData();
  real* inGrad = getInputGrad(0)->getData();
  real* gamma = weight_->getW()->getData();
  real* savedMean = savedMean_->getData();
  real* savedInvVar = savedInvVar_->getData();

  auto create = [](MatrixPtr& m, size_t h, size_t w, real** p) {
    Matrix::resizeOrCreate(m, h, w, false, true);
    m->zeroMem();
    *p = m->getData();
  };

  real* gammaGrad = nullptr;
  real* betaGrad = nullptr;
  if (weight_->getWGrad()) {
    gammaGrad = weight_->getWGrad()->getData();
  } else {
    create(tmpWGrad_, 1, channels_, &gammaGrad);
  }
  if (biases_ && biases_->getWGrad()) {
    betaGrad = biases_->getWGrad()->getData();
  } else {
    create(tmpBiasGrad_, 1, channels_, &betaGrad);
  }
117

Z
zhangjinchao01 已提交
118
  // because of the different api of cudnn v4 and v5.
119 120 121 122 123 124 125
  if (hl_get_cudnn_lib_version() < 5000) {
    if (weight_->getWGrad()) {
      create(tmpWGrad_, 1, channels_, &gammaGrad);
    }
    if (biases_ && biases_->getWGrad()) {
      create(tmpBiasGrad_, 1, channels_, &betaGrad);
    }
Z
zhangjinchao01 已提交
126
  }
127

Z
zhangjinchao01 已提交
128 129 130 131 132 133
  hl_batch_norm_backward(ioDesc_, input, ioDesc_, outGrad,
                         ioDesc_, inGrad, bnParamDesc_,
                         gamma, gammaGrad, betaGrad,
                         EPS, savedMean, savedInvVar);

  // because of the different api of cudnn v4 and v5.
134 135 136 137 138
  if (hl_get_cudnn_lib_version() < 5000) {
    if (weight_->getWGrad() && biases_->getWGrad()) {
      weight_->getWGrad()->add(*tmpWGrad_);
      biases_->getWGrad()->add(*tmpBiasGrad_);
    }
Z
zhangjinchao01 已提交
139
  }
140

Z
zhangjinchao01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    biases_->getParameterPtr()->incUpdate(callback);
    weight_->getParameterPtr()->incUpdate(callback);
  }
}

CudnnBatchNormLayer::~CudnnBatchNormLayer() {
  hl_destroy_tensor_descriptor(ioDesc_);
  hl_destroy_tensor_descriptor(bnParamDesc_);
}

}  // namespace paddle