rmsprop_op.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/rmsprop_op.h"

namespace paddle {
namespace operators {

class RmspropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext *ctx) const override {
25
    PADDLE_ENFORCE(ctx->HasInput("Param"),
K
Kavya Srinet 已提交
26
                   "Input(Param) of RmspropOp should not be null.");
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("MeanSquare"),
                   "Input(MeanSquare) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of RmspropOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
K
Kavya Srinet 已提交
32
                   "Input(Grad) of RmspropOp should not be null.");
33
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
K
Kavya Srinet 已提交
34
                   "Input(Moment) of RmspropOp should not be null.");
35 36 37 38

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(param_out) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
39 40 41
                   "Output(Momentum_out) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MeanSquareOut"),
                   "Output(MeanSquareOut) of RmspropOp should not be null.");
42 43 44 45 46

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "Param and grad input of RmspropOp should have the same dimension.");
47 48 49 50 51 52
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"),
                      "Param and Momentum input of RmspropOp "
                      "should have the same dimension.");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"),
                      "Param and Momentum input of RmspropOp "
                      "should have the same dimension.");
53

K
Kavya Srinet 已提交
54 55 56 57
    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

58 59
    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("MomentOut", param_dim);
60
    ctx->SetOutputDim("MeanSquareOut", param_dim);
61 62 63 64 65
  }
};

class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
66
  RmspropOpMaker(OpProto *proto, OpAttrChecker *op_checker)
67
      : OpProtoAndCheckerMaker(proto, op_checker) {
68 69
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
70
             "Input parameter value that has to be updated.");
71 72
    AddInput("MeanSquare",
             "(Tensor, default Tensor<float>)"
K
kexinzhao 已提交
73
             " The mean square value that gets updated.");
74 75
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
76
             "The learning rate should be a tensor of size 1.");
77 78
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
79
             "Input gradient of the parameter.");
80
    AddInput("Moment",
K
kexinzhao 已提交
81
             "(Tensor, default Tensor<float>) The moment that gets updated.");
82

K
kexinzhao 已提交
83 84 85
    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
    AddOutput("MomentOut", "(Tensor) Output updated moment.");
    AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value.");
86 87 88 89

    AddAttr<float>("epsilon",
                   "(float, default 1e-10) Constant "
                   "for numerical stability.")
90
        .SetDefault(1.0e-10f);
91 92 93
    AddAttr<float>("decay",
                   "(float, default 0.9) "
                   "Discounting factor for coming gradient.")
94
        .SetDefault(0.9f);
K
kexinzhao 已提交
95
    AddAttr<float>("momentum", "(float, default 0.0) Constant value.")
96
        .SetDefault(0.0f);
97
    AddComment(R"DOC(
K
kexinzhao 已提交
98
Rmsprop Optimizer. 
99

K
kexinzhao 已提交
100 101
$$
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
102
MomentOut = momentum * Moment +
K
kexinzhao 已提交
103
            \frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
104
ParamOut = Param -  MomentOut
K
kexinzhao 已提交
105
$$
106

K
kexinzhao 已提交
107
The original slides that proposed Rmsprop: Slide 29 of
108 109 110 111 112 113 114 115 116 117
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker);
Q
QI JUN 已提交
118 119
REGISTER_OP_CPU_KERNEL(
    rmsprop, ops::RmspropOpKernel<paddle::platform::CPUDeviceContext, float>);