activation_op.h 5.5 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

Q
qijun 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename Place, typename T, typename Functor>
class ActivationKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y);
  }
};

template <typename Place, typename T, typename Functor>
class ActivationGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y, dy, dx);
  }
};

Q
qijun 已提交
58 59
// sigmoid = 1 / (1 + exp(-x)
template <typename T>
Q
qijun 已提交
60
struct SigmoidFunctor {
Q
qijun 已提交
61 62 63 64 65 66
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = 1. / (1. + (-x).exp());
  }
};

Q
qijun 已提交
67
struct SigmoidGradFunctor {
Q
qijun 已提交
68 69 70 71 72 73
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * y * (1. - y);
  }
};

Q
qijun 已提交
74
// exp(x) = e^x
Q
qijun 已提交
75
struct ExpFunctor {
Q
qijun 已提交
76 77 78 79 80 81
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.exp();
  }
};

Q
qijun 已提交
82
struct ExpGradFunctor {
Q
qijun 已提交
83 84
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
Q
qijun 已提交
85
    dx.device(d) = dy * y;
Q
qijun 已提交
86 87 88
  }
};

Q
qijun 已提交
89
// relu(x) = max(x, 0)
Q
qijun 已提交
90 91 92 93 94 95 96
template <typename T>
struct ReluFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.cwiseMax(static_cast<T>(0));
  }
};
Q
qijun 已提交
97

Q
qijun 已提交
98 99 100 101 102 103 104
template <typename T>
struct ReluGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
  }
};
Q
qijun 已提交
105

Q
qijun 已提交
106
// tanh = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
Q
qijun 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
struct TanhFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.tanh();
  }
};

template <typename T>
struct TanhGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (T(1) - y * y);
  }
};

Q
qijun 已提交
122
// sqrt(x) = x^(1/2)
Q
qijun 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
struct SqrtFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.sqrt();
  }
};

template <typename T>
struct SqrtGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    const T y_conj = Eigen::numext::conj(y);
    dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
  }
};

Q
qijun 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
// abs(x) = |x|
struct AbsFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.abs();
  }
};

// reciprocal(x) = 1 / x
template <typename T>
struct ReciprocalFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = 1. / x;
  }
};

struct ReciprocalGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (-1.0) * y * y;
  }
};

// log(x) = natural logarithm of x
struct LogFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.log();
  }
};

struct LogGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (1. / x);
  }
};

// square(x) = x^2
struct SquareFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.square();
  }
}

struct SquareGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * 2 * x;
  }
};

Q
qijun 已提交
193 194
}  // namespace operators
}  // namespace paddle