post_process.py 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
C
cnn 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly, rbox2poly
F
FlyingQianMM 已提交
21
from ppdet.modeling.layers import TTFBox
22
from .transformers import bbox_cxcywh_to_xyxy
W
wangguanzhong 已提交
23 24 25 26
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
27

28
__all__ = [
29 30
    'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess',
    'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess',
F
FL77N 已提交
31
    'DETRBBoxPostProcess', 'SparsePostProcess'
32
]
F
Feng Ni 已提交
33

Q
qingqing01 已提交
34 35

@register
C
cnn 已提交
36
class BBoxPostProcess(nn.Layer):
37
    __shared__ = ['num_classes']
Q
qingqing01 已提交
38 39
    __inject__ = ['decode', 'nms']

40
    def __init__(self, num_classes=80, decode=None, nms=None):
Q
qingqing01 已提交
41
        super(BBoxPostProcess, self).__init__()
42
        self.num_classes = num_classes
Q
qingqing01 已提交
43 44
        self.decode = decode
        self.nms = nms
C
cnn 已提交
45 46
        self.fake_bboxes = paddle.to_tensor(
            np.array(
W
wangguanzhong 已提交
47
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
C
cnn 已提交
48
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
Q
qingqing01 已提交
49

C
cnn 已提交
50
    def forward(self, head_out, rois, im_shape, scale_factor):
51 52 53
        """
        Decode the bbox and do NMS if needed. 

F
Feng Ni 已提交
54 55 56 57 58
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
59
        Returns:
F
Feng Ni 已提交
60 61 62 63 64
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
65
        """
F
Feng Ni 已提交
66 67
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
68
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
F
Feng Ni 已提交
69 70 71
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
Q
qingqing01 已提交
72 73
        return bbox_pred, bbox_num

74 75 76
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
77 78 79 80
        get final prediction. 
        
        Notes:
        Currently only support bs = 1.
81 82

        Args:
G
Guanghua Yu 已提交
83
            bboxes (Tensor): The output bboxes with shape [N, 6] after decode
F
Feng Ni 已提交
84 85 86 87 88
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
89
        Returns:
F
Feng Ni 已提交
90 91
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
92
        """
W
wangguanzhong 已提交
93 94

        if bboxes.shape[0] == 0:
C
cnn 已提交
95 96
            bboxes = self.fake_bboxes
            bbox_num = self.fake_bbox_num
W
wangguanzhong 已提交
97

98 99 100 101 102 103 104 105
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
G
Guanghua Yu 已提交
106
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
            expand_scale = paddle.expand(scale, [bbox_num[i], 4])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        self.origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
        return pred_result

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
141 142 143

@register
class MaskPostProcess(object):
144
    def __init__(self, binary_thresh=0.5):
Q
qingqing01 已提交
145 146 147
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh

148
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
149 150 151
        """
        Paste the mask prediction to the original image.
        """
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
        masks = paddle.unsqueeze(masks, [0, 1])
        img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
        img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
        img_x = paddle.unsqueeze(img_x, [1])
        img_y = paddle.unsqueeze(img_y, [2])
        N = boxes.shape[0]

        gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
        gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
183 184
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
185 186
        origin_shape = paddle.cast(origin_shape, 'int32')
        # TODO: support bs > 1 and mask output dtype is bool
187
        pred_result = paddle.zeros(
G
Guanghua Yu 已提交
188
            [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
189
        if bbox_num == 1 and bboxes[0][0] == -1:
G
Guanghua Yu 已提交
190 191
            return pred_result

192
        # TODO: optimize chunk paste
G
Guanghua Yu 已提交
193
        pred_result = []
194
        for i in range(bboxes.shape[0]):
G
Guanghua Yu 已提交
195
            im_h, im_w = origin_shape[i][0], origin_shape[i][1]
196 197 198
            pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
                                        im_w)
            pred_mask = pred_mask >= self.binary_thresh
G
Guanghua Yu 已提交
199 200 201
            pred_mask = paddle.cast(pred_mask, 'int32')
            pred_result.append(pred_mask)
        pred_result = paddle.concat(pred_result)
202
        return pred_result
F
Feng Ni 已提交
203 204 205 206 207 208 209 210 211 212 213 214


@register
class FCOSPostProcess(object):
    __inject__ = ['decode', 'nms']

    def __init__(self, decode=None, nms=None):
        super(FCOSPostProcess, self).__init__()
        self.decode = decode
        self.nms = nms

    def __call__(self, fcos_head_outs, scale_factor):
F
Feng Ni 已提交
215 216 217
        """
        Decode the bbox and do NMS in FCOS.
        """
F
Feng Ni 已提交
218 219 220 221 222
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
                                    centerness, scale_factor)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num
C
cnn 已提交
223 224 225


@register
C
cnn 已提交
226
class S2ANetBBoxPostProcess(nn.Layer):
227
    __shared__ = ['num_classes']
C
cnn 已提交
228 229
    __inject__ = ['nms']

230
    def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
C
cnn 已提交
231
        super(S2ANetBBoxPostProcess, self).__init__()
232
        self.num_classes = num_classes
C
cnn 已提交
233 234 235 236
        self.nms_pre = nms_pre
        self.min_bbox_size = min_bbox_size
        self.nms = nms
        self.origin_shape_list = []
C
cnn 已提交
237 238 239 240 241
        self.fake_pred_cls_score_bbox = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
                dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
C
cnn 已提交
242

C
cnn 已提交
243
    def forward(self, pred_scores, pred_bboxes):
C
cnn 已提交
244 245 246 247 248 249
        """
        pred_scores : [N, M]  score
        pred_bboxes : [N, 5]  xc, yc, w, h, a
        im_shape : [N, 2]  im_shape
        scale_factor : [N, 2]  scale_factor
        """
C
cnn 已提交
250 251
        pred_ploys0 = rbox2poly(pred_bboxes)
        pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
C
cnn 已提交
252 253

        # pred_scores [NA, 16] --> [16, NA]
C
cnn 已提交
254 255
        pred_scores0 = paddle.transpose(pred_scores, [1, 0])
        pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
C
cnn 已提交
256

257 258 259 260
        pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
                                                    self.num_classes)
        # Prevent empty bbox_pred from decode or NMS.
        # Bboxes and score before NMS may be empty due to the score threshold.
C
cnn 已提交
261 262 263 264 265 266
        if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
                1] <= 1:
            pred_cls_score_bbox = self.fake_pred_cls_score_bbox
            bbox_num = self.fake_bbox_num

        pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
267
        return pred_cls_score_bbox, bbox_num
C
cnn 已提交
268

269
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
C
cnn 已提交
270 271 272 273
        """
        Rescale, clip and filter the bbox from the output of NMS to
        get final prediction.
        Args:
274
            bboxes(Tensor): bboxes [N, 10]
C
cnn 已提交
275 276 277 278 279 280 281 282 283 284
            bbox_num(Tensor): bbox_num
            im_shape(Tensor): [1 2]
            scale_factor(Tensor): [1 2]
        Returns:
            bbox_pred(Tensor): The output is the prediction with shape [N, 8]
                               including labels, scores and bboxes. The size of
                               bboxes are corresponding to the original image.
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
            scale = paddle.concat([
                scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
                scale_y
            ])
            expand_scale = paddle.expand(scale, [bbox_num[i], 8])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 10], label, score, bbox
        pred_label_score = bboxes[:, 0:2]
C
cnn 已提交
305
        pred_bbox = bboxes[:, 2:]
306 307

        # rescale bbox to original image
C
cnn 已提交
308
        pred_bbox = pred_bbox.reshape([-1, 8])
309 310 311
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = origin_shape_list[:, 0]
        origin_w = origin_shape_list[:, 1]
C
cnn 已提交
312

313
        bboxes = scaled_bbox
C
cnn 已提交
314
        zeros = paddle.zeros_like(origin_h)
C
cnn 已提交
315 316 317 318 319 320 321 322
        x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
        y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
        x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
        y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
        x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
        y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
        x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
        y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
323 324 325
        pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
        pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
        return pred_result
326 327 328


@register
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
class JDEBBoxPostProcess(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['decode', 'nms']

    def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
        super(JDEBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.decode = decode
        self.nms = nms
        self.return_idx = return_idx

        self.fake_bbox_pred = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
        self.fake_nms_keep_idx = paddle.to_tensor(
            np.array(
                [[0]], dtype='int32'))

        self.fake_yolo_boxes_out = paddle.to_tensor(
            np.array(
                [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
        self.fake_yolo_scores_out = paddle.to_tensor(
            np.array(
                [[[0.0]]], dtype='float32'))
        self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))

G
George Ni 已提交
356
    def forward(self, head_out, anchors):
357 358 359 360 361 362 363 364 365 366 367 368 369 370
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
371
        boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386
        if len(boxes_idx) == 0:
            boxes_idx = self.fake_boxes_idx
            yolo_boxes_out = self.fake_yolo_boxes_out
            yolo_scores_out = self.fake_yolo_scores_out
        else:
            yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
            # TODO: only support bs=1 now
            yolo_boxes_out = paddle.reshape(
                yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
            yolo_scores_out = paddle.reshape(
                yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
            boxes_idx = boxes_idx[:, 1:]

        if self.return_idx:
G
George Ni 已提交
387 388 389 390 391 392
            bbox_pred, bbox_num, nms_keep_idx = self.nms(
                yolo_boxes_out, yolo_scores_out, self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
                nms_keep_idx = self.fake_nms_keep_idx
393 394
            return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
        else:
G
George Ni 已提交
395 396 397 398 399 400
            bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
                                              self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
            return _, bbox_pred, bbox_num, _
F
FlyingQianMM 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464


@register
class CenterNetPostProcess(TTFBox):
    """
    Postprocess the model outputs to get final prediction:
        1. Do NMS for heatmap to get top `max_per_img` bboxes.
        2. Decode bboxes using center offset and box size.
        3. Rescale decoded bboxes reference to the origin image shape.

    Args:
        max_per_img(int): the maximum number of predicted objects in a image,
            500 by default.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default.
        for_mot (bool): whether return other features used in tracking model.

    """

    __shared__ = ['down_ratio']

    def __init__(self,
                 max_per_img=500,
                 down_ratio=4,
                 regress_ltrb=True,
                 for_mot=False):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.down_ratio = down_ratio
        self.regress_ltrb = regress_ltrb
        self.for_mot = for_mot

    def __call__(self, hm, wh, reg, im_shape, scale_factor):
        heat = self._simple_nms(hm)
        scores, inds, clses, ys, xs = self._topk(heat)
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        reg_t = paddle.transpose(reg, [0, 2, 3, 1])
        # Like TTFBox, batch size is 1.
        # TODO: support batch size > 1
        reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]])
        reg = paddle.gather(reg, inds)
        xs = paddle.cast(xs, 'float32')
        ys = paddle.cast(ys, 'float32')
        xs = xs + reg[:, 0:1]
        ys = ys + reg[:, 1:2]

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        if self.regress_ltrb:
            x1 = xs - wh[:, 0:1]
            y1 = ys - wh[:, 1:2]
            x2 = xs + wh[:, 2:3]
            y2 = ys + wh[:, 3:4]
        else:
            x1 = xs - wh[:, 0:1] / 2
            y1 = ys - wh[:, 1:2] / 2
            x2 = xs + wh[:, 0:1] / 2
            y2 = ys + wh[:, 1:2] / 2

465
        n, c, feat_h, feat_w = hm.shape[:]
F
FlyingQianMM 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
        padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
        x1 = x1 * self.down_ratio
        y1 = y1 * self.down_ratio
        x2 = x2 * self.down_ratio
        y2 = y2 * self.down_ratio

        x1 = x1 - padw
        y1 = y1 - padh
        x2 = x2 - padw
        y2 = y2 - padh

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        if self.for_mot:
            results = paddle.concat([bboxes, scores, clses], axis=1)
            return results, inds
        else:
            results = paddle.concat([clses, scores, bboxes], axis=1)
            return results, paddle.shape(results)[0:1]
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553


@register
class DETRBBoxPostProcess(object):
    __shared__ = ['num_classes', 'use_focal_loss']
    __inject__ = []

    def __init__(self,
                 num_classes=80,
                 num_top_queries=100,
                 use_focal_loss=False):
        super(DETRBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_top_queries = num_top_queries
        self.use_focal_loss = use_focal_loss

    def __call__(self, head_out, im_shape, scale_factor):
        """
        Decode the bbox.

        Args:
            head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
        Returns:
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [bs], and is N.
        """
        bboxes, logits, masks = head_out

        bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
        img_h, img_w = origin_shape.unbind(1)
        origin_shape = paddle.stack(
            [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0)
        bbox_pred *= origin_shape

        scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
            logits)[:, :, :-1]
        scores, labels = scores.max(-1), scores.argmax(-1)

        if scores.shape[1] > self.num_top_queries:
            scores, index = paddle.topk(scores, self.num_top_queries, axis=-1)
            labels = paddle.stack(
                [paddle.gather(l, i) for l, i in zip(labels, index)])
            bbox_pred = paddle.stack(
                [paddle.gather(b, i) for b, i in zip(bbox_pred, index)])

        bbox_pred = paddle.concat(
            [
                labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
                bbox_pred
            ],
            axis=-1)
        bbox_num = paddle.to_tensor(
            bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
        bbox_pred = bbox_pred.reshape([-1, 6])
        return bbox_pred, bbox_num
F
FL77N 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640


@register
class SparsePostProcess(object):
    __shared__ = ['num_classes']

    def __init__(self, num_proposals, num_classes=80):
        super(SparsePostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_proposals = num_proposals

    def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh):
        """
        Arguments:
            box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
                The tensor predicts the classification probability for each proposal.
            box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
                The tensor predicts 4-vector (x,y,w,h) box
                regression values for every proposal
            scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of  per img
            img_whwh (Tensor): tensors of shape [batch_size, 4]
        Returns:
            bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values:
            [label, confidence, xmin, ymin, xmax, ymax]
            bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image.
        """
        assert len(box_cls) == len(scale_factor_wh) == len(img_whwh)

        img_wh = img_whwh[:, :2]

        scores = F.sigmoid(box_cls)
        labels = paddle.arange(0, self.num_classes). \
            unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1)

        classes_all = []
        scores_all = []
        boxes_all = []
        for i, (scores_per_image,
                box_pred_per_image) in enumerate(zip(scores, box_pred)):

            scores_per_image, topk_indices = scores_per_image.flatten(
                0, 1).topk(
                    self.num_proposals, sorted=False)
            labels_per_image = paddle.gather(labels, topk_indices, axis=0)

            box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile(
                [1, self.num_classes, 1]).reshape([-1, 4])
            box_pred_per_image = paddle.gather(
                box_pred_per_image, topk_indices, axis=0)

            classes_all.append(labels_per_image)
            scores_all.append(scores_per_image)
            boxes_all.append(box_pred_per_image)

        bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32")
        boxes_final = []

        for i in range(len(scale_factor_wh)):
            classes = classes_all[i]
            boxes = boxes_all[i]
            scores = scores_all[i]

            boxes[:, 0::2] = paddle.clip(
                boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0]
            boxes[:, 1::2] = paddle.clip(
                boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1]
            boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), (
                boxes[:, 3] - boxes[:, 1]).numpy()

            keep = (boxes_w > 1.) & (boxes_h > 1.)

            if (keep.sum() == 0):
                bboxes = paddle.zeros([1, 6]).astype("float32")
            else:
                boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32")
                classes = paddle.to_tensor(classes.numpy()[keep]).astype(
                    "float32").unsqueeze(-1)
                scores = paddle.to_tensor(scores.numpy()[keep]).astype(
                    "float32").unsqueeze(-1)

                bboxes = paddle.concat([classes, scores, boxes], axis=-1)

            boxes_final.append(bboxes)
            bbox_num[i] = bboxes.shape[0]

        bbox_pred = paddle.concat(boxes_final)
        return bbox_pred, bbox_num