analyzer_seq_pool1_tester.cc 7.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21 22 23
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

24 25 26 27 28 29
// diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1
static const char out_var_name[] = "reduce_sum_0.tmp_0";

// for diff: 154, for speed 111
constexpr int num_slots = 154;

T
tensor-tang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
struct OneSlotInBatch {
  std::string name;
  std::vector<std::vector<float>> data;
  std::vector<int> shape;
  std::vector<size_t> lod;
};

struct DataRecord {
  std::vector<std::vector<OneSlotInBatch>> batched_data;
  std::map<std::string, std::vector<std::vector<float>>> datasets;
  size_t batch_iter{0}, num_samples;  // total number of samples

  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      std::vector<float> slot_data;
      split_to_float(data[1], ' ', &slot_data);
      std::string name = data[0];
T
tensor-tang 已提交
59
      PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0UL,
T
tensor-tang 已提交
60 61 62 63 64 65
                        "line %d, %s should be divisible", num_lines, name);
      datasets[name].emplace_back(std::move(slot_data));
    }
    num_samples = num_lines / num_slots;
    PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
                      "num samples should be divisible");
T
tensor-tang 已提交
66
    PADDLE_ENFORCE_GT(num_samples, 0UL);
T
tensor-tang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  }

  void Prepare(int bs) {
    for (auto it = datasets.begin(); it != datasets.end(); ++it) {
      PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
                        "size of each slot should be equal");
    }
    size_t num_batches = num_samples / bs;
    EXPECT_GT(num_batches, 0);
    batched_data.resize(num_batches);
    for (auto &one_batch : batched_data) {
      one_batch.resize(datasets.size());
      size_t i = 0;
      for (auto it = datasets.begin(); it != datasets.end(); ++it) {
        auto &slot = one_batch[i];
        slot.name = it->first;
        slot.data.resize(bs);
        slot.lod.resize(bs + 1);
        slot.lod[0] = 0;
        auto &lod = slot.lod;
        auto &datas = it->second;
        for (int k = 0; k < bs; ++k) {
          size_t id = k + batch_iter * bs;
          std::copy(datas[id].begin(), datas[id].end(),
                    std::back_inserter(slot.data[k]));
          size_t len = datas[id].size() / 11;
          PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
                            "%s %d size should be divisible", slot.name, id);
          lod[k + 1] = lod[k] + len;
        }
        slot.shape.assign({static_cast<int>(lod[bs]), 11});
        i++;
      }
    }
  }

  const std::vector<OneSlotInBatch> &NextBatch() {
    if (batch_iter >= batched_data.size() - 1) {
      batch_iter = -1;
    }
    return batched_data[++batch_iter];
  }
};

static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
  tensor->name = slot.name + "_embed";
  tensor->shape = slot.shape;
  tensor->dtype = PaddleDType::FLOAT32;
  tensor->lod.clear();
  tensor->lod.emplace_back(slot.lod);
  TensorAssignData(tensor, slot.data);
}

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
  const auto &one_batch = data->NextBatch();
  input_slots->resize(one_batch.size());
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    TensorAssignSlot(&((*input_slots)[i]), slot);
  }
}

T
tensor-tang 已提交
129
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
T
tensor-tang 已提交
130 131 132 133 134 135 136 137 138
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
  LOG(INFO) << "number of samples: "
            << data.batched_data.size() * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data);
    (*inputs).emplace_back(input_slots);
  }
T
tensor-tang 已提交
139 140
}

T
tensor-tang 已提交
141 142 143 144
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
Y
Yan Chunwei 已提交
145
  cfg->SwitchIrDebug();
T
tensor-tang 已提交
146
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
L
luotao1 已提交
147 148 149
  if (FLAGS_zero_copy) {
    cfg->SwitchUseFeedFetchOps(false);
  }
T
tensor-tang 已提交
150 151 152
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
153 154 155
  // Enable seqpool_concat_fuse_pass, disabled by default since it takes much
  // time
  cfg->pass_builder()->InsertPass(2, "seqpool_concat_fuse_pass");
T
tensor-tang 已提交
156 157
}

T
tensor-tang 已提交
158 159
void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
T
tensor-tang 已提交
160
  SetConfig(&cfg, use_mkldnn);
T
tensor-tang 已提交
161

162
  std::vector<std::vector<PaddleTensor>> outputs;
T
tensor-tang 已提交
163 164 165 166 167 168 169 170
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_seq_pool1, profile) { profile(); }

T
tensor-tang 已提交
171 172 173 174 175 176 177 178 179 180 181
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

182 183 184 185 186 187 188 189 190 191 192
// Compare Deterministic result
TEST(Analyzer_seq_pool1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

L
luotao1 已提交
193 194
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) {
T
tensor-tang 已提交
195 196 197 198
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
199
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
T
tensor-tang 已提交
200
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
T
tensor-tang 已提交
201
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
202 203 204
  ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse"));
  ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
T
tensor-tang 已提交
205
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
206 207
  EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2);
  EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2);
T
tensor-tang 已提交
208
  LOG(INFO) << "num_ops: " << num_ops;
209
  EXPECT_EQ(num_ops, 171);
T
tensor-tang 已提交
210 211
}

L
luotao1 已提交
212 213 214 215
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_seq_pool1, compare_zero_copy) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
216 217 218

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
L
luotao1 已提交
219 220 221 222
  std::vector<std::string> outputs_name;
  outputs_name.emplace_back(out_var_name);
  CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
                             input_slots_all, outputs_name);
T
tensor-tang 已提交
223 224
}

T
tensor-tang 已提交
225 226 227
}  // namespace analysis
}  // namespace inference
}  // namespace paddle