multi_devices_graph_pass.cc 35.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39

C
chengduo 已提交
40 41 42 43 44 45
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
103
    var = *var_holder.rbegin();
X
Xin Pan 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
131

132
void MultiDevSSAGraphBuilderBase::Init() const {
X
clean  
Xin Pan 已提交
133 134
  all_vars_.clear();

X
Xin Pan 已提交
135 136 137 138
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
139
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
140
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
141
#endif
Y
Yu Yang 已提交
142 143
}

144
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
X
Xin Pan 已提交
145
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
146
  Init();
147
  std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
C
chengduo 已提交
148

X
Xin Pan 已提交
149 150
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
151 152

  for (auto &node : nodes) {
X
Xin Pan 已提交
153
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
154
      all_vars_.emplace(node->Name(), node->Var());
155
    }
C
fix ci  
chengduoZH 已提交
156
  }
Y
Yu Yang 已提交
157 158

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
159 160 161
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
162

Y
Yu Yang 已提交
163
  bool is_forwarding = true;
164
  bool insert_collection_ops = NeedCollectiveOps();
X
Xin Pan 已提交
165

X
better  
Xin Pan 已提交
166
  for (ir::Node *node : sorted_ops) {
167 168
    if (DealWithSpecialOp(&result, node)) {
      continue;
Y
Yu Yang 已提交
169
    } else {
170 171 172 173 174 175 176 177 178
      // This op runs on all devices
      if (IsScaleLossOp(node)) {
        // user can customize loss@grad if not use_default_grad_scale_
        InsertScaleLossGradOp(&result, node);
        // This assumes the backward generating code will ensure IsScaleLossOp
        // is true only for the op that scale the final scalar loss.
        // It also assumes backward op will always follow the forward op in
        // the block.
        is_forwarding = false;
C
chengduo 已提交
179
      } else {
180 181
        CreateComputationalOps(&result, node, places_.size());
      }
182

183 184 185
      // Insert collection ops
      if (!is_forwarding && insert_collection_ops) {
        try {
C
chengduo 已提交
186 187 188 189 190
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
          if (!is_bk_op) continue;
191

C
chengduo 已提交
192 193
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
194 195 196 197 198 199 200 201 202 203
          auto backward_vars =
              boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                  OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

          for (size_t i = 0; i < backward_vars.size(); i += 2) {
            auto &p_name = backward_vars[i];
            auto &g_name = backward_vars[i + 1];
            VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
Yancey1989 已提交
204
            InsertCollectiveOp(&result, p_name, g_name);
Y
Yu Yang 已提交
205
          }
206
        } catch (boost::bad_get e) {
Y
Yu Yang 已提交
207 208 209 210
        }
      }
    }
  }
211

212 213
  InsertPostprocessOps(&result);

Y
Yu Yang 已提交
214
  /*
X
Xin Pan 已提交
215 216
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
217
  */
Y
Yu Yang 已提交
218
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
219

Y
Yu Yang 已提交
220 221 222 223
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
Q
qiaolongfei 已提交
224
  return graph;
Y
Yu Yang 已提交
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
    ir::Graph *result, const ir::Node *node) const {
  // user can customize loss@grad if not use_default_grad_scale_
  size_t loss_scale = 0;
  switch (this->strategy_.gradient_scale_) {
    case BuildStrategy::GradientScaleStrategy::kOne:
      loss_scale = 1;
      break;
    case BuildStrategy::GradientScaleStrategy::kCoeffNumDevice:
      loss_scale = Get<size_t>(kNRanks);
      break;
    case BuildStrategy::GradientScaleStrategy::kCustomized:
      loss_scale = 0;
      break;
    default:
      LOG(FATAL) << "Unknown gradient scale strategy.";
      break;
  }

  if (loss_scale) {
    // TODO(paddle-dev): Why is there no input for this op_handle?
    auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
    auto out_dtype = this->all_vars_.at(loss_grad_name)->GetDataType();
    this->CreateScaleLossGradOp(result, loss_grad_name, node->outputs[0],
                                loss_scale, out_dtype);
  }
}
C
chengduo 已提交
254

255 256 257 258
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
    const ir::Graph &graph) const {
  return ir::TopologySortOperations(graph);
}
C
chengduo 已提交
259

260 261 262 263 264 265 266
bool MultiDevSSAGraphBuilderBase::UseGPU() const {
  bool use_gpu = false;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  use_gpu = nccl_ctxs_ != nullptr;
#endif
  return use_gpu;
}
C
chengduo 已提交
267

268 269
bool MultiDevSSAGraphBuilderBase::NeedCollectiveOps() const {
  return Get<size_t>(kNRanks) > 1;
C
chengduo 已提交
270 271
}

272 273 274
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
                                                    ir::Node *node,
                                                    size_t place_id) const {
C
chengduo 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

297
void MultiDevSSAGraphBuilderBase::SetCommunicationContext(
298
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
299
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
300 301 302 303 304 305 306 307 308 309
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

310 311 312
void MultiDevSSAGraphBuilderBase::CreateBroadcastOp(ir::Graph *result,
                                                    const std::string &p_name,
                                                    size_t src_dev_id) const {
P
peizhilin 已提交
313
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
314 315 316
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
317
#else
X
polish  
Xin Pan 已提交
318 319 320
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
321
#endif
X
Xin Pan 已提交
322
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
323

X
Xin Pan 已提交
324
  auto *in =
X
clean1  
Xin Pan 已提交
325
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
326 327 328 329
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
330
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
331
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
332 333 334
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
335 336 337 338 339
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

340
void MultiDevSSAGraphBuilderBase::CreateFusedBroadcastOp(
341 342
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
343
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
362
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

378 379 380
void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
                                                        ir::Node *node,
                                                        int dev_id) const {
X
Xin Pan 已提交
381
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
382
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
383
                              local_scopes_[dev_id], places_[dev_id], dev_id));
384
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
385 386
}

387
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
Y
Yancey1989 已提交
388
    ir::Graph *result, const std::string &og) const {
Y
Yancey1989 已提交
389 390 391
  OpHandleBase *op_handle = nullptr;

  auto append_allreduce_op = [&](
Y
Yancey1989 已提交
392 393
      const std::vector<Scope *> &scopes,
      const std::vector<platform::Place> &places) -> OpHandleBase * {
P
peizhilin 已提交
394
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
395 396 397
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places, nccl_ctxs_));
C
chengduoZH 已提交
398
#else
Y
Yancey1989 已提交
399 400 401
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places));
C
chengduoZH 已提交
402
#endif
Y
Yancey1989 已提交
403 404 405 406 407
    return result->Get<GraphOps>(kGraphOps).back();
  };

  if (!strategy_.enable_parallel_graph_)
    op_handle = append_allreduce_op(local_scopes_, places_);
Y
Yu Yang 已提交
408 409

  for (size_t i = 0; i < places_.size(); ++i) {
Y
Yancey1989 已提交
410 411 412
    if (strategy_.enable_parallel_graph_) {
      op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
    }
Y
Yancey1989 已提交
413

Y
Yancey1989 已提交
414
    SetCommunicationContext(op_handle, places_[i]);
X
Xin Pan 已提交
415
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
416 417
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
418
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
419

X
Xin Pan 已提交
420
    auto var =
X
polish  
Xin Pan 已提交
421
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
Y
Yancey1989 已提交
422
                      vars.size(), i, og, places_[i]);
Y
Yu Yang 已提交
423 424 425 426 427
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

428
void MultiDevSSAGraphBuilderBase::CreateScaleLossGradOp(
429
    ir::Graph *result, const std::string &loss_grad_name,
430 431
    ir::Node *out_var_node, size_t loss_scale,
    proto::VarType::Type dtype) const {
Y
Yu Yang 已提交
432
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
433
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
434
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
435
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
436
        loss_scale, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
437
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
438 439 440 441 442 443 444

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

445 446
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
447 448 449
  }
}

450 451
void MultiDevSSAGraphBuilderBase::CreateComputationalOps(
    ir::Graph *result, ir::Node *node, size_t num_places) const {
T
typhoonzero 已提交
452
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
453 454
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
455 456
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
457
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
458 459 460
  }
}

461 462 463
VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result,
                                                       const std::string &og,
                                                       int dst_dev_id) const {
P
peizhilin 已提交
464
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
465
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
466 467
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
468
#else
X
Xin Pan 已提交
469
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
470 471
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
472
#endif
X
clean1  
Xin Pan 已提交
473
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
474 475 476

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
477
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
478
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
479 480
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
481
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
482
  }
X
Xin Pan 已提交
483
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
484 485 486
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
487 488 489 490 491
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

492 493 494 495 496 497 498 499 500 501 502 503 504
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
  return boost::get<int>(
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
}

bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
    const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
    return true;
505
  }
506 507 508 509
  return false;
}

void AllReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
510
    ir::Graph *result, const std::string &p_name,
511 512 513 514 515
    const std::string &g_name) const {
  if (IsSparseGradient(g_name)) {
    CreateReduceOp(result, g_name, 0);
    CreateBroadcastOp(result, g_name, 0);
  } else {
Y
Yancey1989 已提交
516
    CreateAllReduceOp(result, g_name);
517
  }
518
}
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
int BalanceVarSSAGraphBuilder::GetVarDeviceID(
    const std::string &varname) const {
  auto got = sharded_var_device_.find(varname);
  if (got == sharded_var_device_.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device_.find(varname.substr(0, pos));
    }
  }
  return got == sharded_var_device_.end() ? -1 : got->second;
}

int BalanceVarSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }
  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
  return dev_id;
}

size_t BalanceVarSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

void BalanceVarSSAGraphBuilder::ResetState() const {
  balance_vars_.clear();
  sharded_var_device_.clear();

  balance_vars_.resize(places_.size(), 0);
}

void ReduceSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void ReduceSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

void ReduceSSAGraphBuilder::InsertCollectiveOp(
Y
Yancey1989 已提交
589
    ir::Graph *result, const std::string &p_name,
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    const std::string &g_name) const {
  size_t cur_device_id = GetAppropriateDeviceID({g_name});
  CreateReduceOp(result, g_name, cur_device_id);
  sharded_var_device_.emplace(g_name, cur_device_id);
  bcast_var_name_set_[cur_device_id].emplace(p_name);
}

bool ReduceSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                              ir::Node *node) const {
  int op_dev_id = BalanceVarSSAGraphBuilder::GetOpDeviceID(node);
  if (op_dev_id != -1) {
    // This op only runs on one specific device.
    CreateComputationalOp(result, node, op_dev_id);
    for (ir::Node *n : node->outputs) {
      sharded_var_device_.emplace(n->Name(), op_dev_id);
    }
    return true;
  }
  return false;
}

void ReduceSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (UseGPU()) {
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
Y
Yancey1989 已提交
621 622
      }
    }
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
  }
}

int ReduceSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortOperations(
    const ir::Graph &graph) const {
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(graph);
  return SortForReduceMode(sorted_ops);
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());
  ResetState();

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device_.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
Y
Yancey1989 已提交
665
    }
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
Y
yi.wu 已提交
703
    }
Y
Yancey1989 已提交
704 705
  }

706
  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
Y
Yancey1989 已提交
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  ResetState();
  return sorted_ops;
}

void DistSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void DistSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

bool DistSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                            ir::Node *node) const {
  bool insert_op = false;
  if (OpHaveRole(*node, OpRole::kRPC)) {
    int op_dev_id = CreateRPCOp(result, node);
    PADDLE_ENFORCE(op_dev_id != -1,
                   "Can not schedule the RPC operator to the right place.");
    if (node->Op()->Type() == "recv") {
      auto recv_vars_attr =
          boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
              OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
      if (recv_vars_attr[0].find(".block") == std::string::npos) {
        bcast_var_name_set_[op_dev_id].emplace(recv_vars_attr[0]);
      }
    }
    insert_op = true;
    need_broadcast_var_ = true;
  } else if (OpHaveRole(*node, OpRole::kDist)) {
    int op_dev_id = CreateDistTrainOp(result, node);
    if (node->Op()->Type() == "concat") {
      auto origin_param_name = node->Op()->OutputArgumentNames()[0];
      bcast_var_name_set_[op_dev_id].emplace(origin_param_name);
    }
    insert_op = true;
  } else {
    int op_dev_id = GetOpDeviceID(node);
    if (op_dev_id != -1) {  // This op only runs on one specific device.
      CreateComputationalOp(result, node, op_dev_id);
      for (ir::Node *n : node->outputs) {
        sharded_var_device_.emplace(n->Name(), op_dev_id);
      }
      insert_op = true;
    }
  }
  return insert_op;
W
Wu Yi 已提交
759 760 761
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
762
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
763 764 765 766 767 768
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
769
        var = *var_holder.rbegin();
W
Wu Yi 已提交
770 771 772
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
773 774 775
  }
}

776
// Create RPC related op handles that connects its in ops and out ops.
777
int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
778
  int op_dev_id = -1;
779
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
780
    // TODO(paddle-dev): getting the first var is not safe.
781
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
X
Xin Pan 已提交
782 783
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
784 785 786
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
787
        node->inputs[0]->Name().find(".block") == std::string::npos) {
788 789
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
790
        input_var_names.push_back(n->Name());
791
      }
W
Wu Yi 已提交
792 793 794 795
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
796 797
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
798
      for (auto &varname : input_var_names) {
799
        sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
800
      }
801
      sharded_var_device_.emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
802
    }
803 804 805
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
806
      output_var_names.push_back(n->Name());
807
    }
W
Wu Yi 已提交
808 809 810
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
811
      op_dev_id = GetVarDeviceID(recv_param_grad[1]);
M
minqiyang 已提交
812 813 814
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
815 816 817
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
818
    for (auto &varname : output_var_names) {
819
      sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
820 821
    }
  } else {
W
Wu Yi 已提交
822
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
823 824 825 826
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
827
                 node->Op()->Type());
X
Xin Pan 已提交
828
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
829 830
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
831

W
Wu Yi 已提交
832 833
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
834
  } else {
W
Wu Yi 已提交
835 836 837
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
838
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
839 840
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
841

W
Wu Yi 已提交
842 843 844 845
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
846
        outvar_dev_id = GetVarDeviceID(output->Name());
Q
Qiao Longfei 已提交
847
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
848 849 850 851 852 853 854 855 856 857 858 859
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
860
  return op_dev_id;
Y
Yu Yang 已提交
861 862
}

863 864 865 866 867 868 869
int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                           ir::Node *node) const {
  int op_dev_id = -1;
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
C
chengduo 已提交
870
  }
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
    // TODO(paddle-dev): getting the first var is not safe.
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
        sharded_var_device_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else {
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
    PADDLE_THROW(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());

  CreateComputationalOp(result, node, op_dev_id);
  return op_dev_id;
C
chengduo 已提交
907 908
}

Y
Yancey1989 已提交
909
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
910 911 912 913 914 915 916 917 918 919 920 921 922 923
                                             const std::string &p_name,
                                             const std::string &g_name) const {
  size_t cur_device_id = 0;
  switch (strategy_.reduce_) {
    case BuildStrategy::ReduceStrategy::kReduce:
      cur_device_id = GetAppropriateDeviceID({g_name});
      CreateReduceOp(result, g_name, cur_device_id);
      sharded_var_device_.emplace(g_name, cur_device_id);
      break;
    case BuildStrategy::ReduceStrategy::kAllReduce:
      if (IsSparseGradient(g_name)) {
        CreateReduceOp(result, g_name, 0);
        CreateBroadcastOp(result, g_name, 0);
      } else {
Y
Yancey1989 已提交
924
        CreateAllReduceOp(result, g_name);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
      }
      break;
    default:
      LOG(FATAL) << "Unknown reduce strategy.";
      break;
  }
}

void DistSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (need_broadcast_var_ ||
      (UseGPU() &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce)) {
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
      }
    }
  }
}

std::unordered_set<std::string> &MultiDevSSAGraphBuilder() {
  static std::unordered_set<std::string> regs;
  return regs;
Y
Yu Yang 已提交
953
}
954 955 956 957 958 959

static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
  MultiDevSSAGraphBuilder().insert(builder_mode);
  return 0;
}

Y
Yu Yang 已提交
960 961 962
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
963

964 965 966 967 968 969 970 971 972 973 974
#define REGISTER_MULTI_DEVICES_PASS(pass_name, pass_class)                     \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      _reg_ssa_graph_builder_##pass_name,                                      \
      "REGISTER_MULTI_DEVICES_PASS must be called in global namespace.");      \
  int _reg_ssa_graph_builder_entry_##pass_name =                               \
      paddle::framework::details::MultiDevSSAGraphBuilderRegister(#pass_name); \
  REGISTER_PASS(pass_name, pass_class)                                         \
      .RequirePassAttr(paddle::framework::details::kLossVarName)               \
      .RequirePassAttr(paddle::framework::details::kPlaces)                    \
      .RequirePassAttr(paddle::framework::details::kLocalScopes)               \
      .RequirePassAttr(paddle::framework::details::kStrategy)                  \
Y
Yancey1989 已提交
975
      .RequirePassAttr(paddle::framework::details::kNRanks)
976 977 978 979 980 981 982 983

REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
                            paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
    allreduce_mode_multi_devices_pass,
    paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
                            paddle::framework::details::DistSSAGraphBuilder);