yolov3_darknet.yml 1.3 KB
Newer Older
F
FDInSky 已提交
1 2 3
architecture: YOLOv3
use_gpu: true
max_iters: 500000
4
log_iter: 20
F
FDInSky 已提交
5
save_dir: output
W
wangguanzhong 已提交
6
snapshot_iter: 50000
F
FDInSky 已提交
7
metric: COCO
W
wangguanzhong 已提交
8
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar
F
FDInSky 已提交
9 10 11
weights: output/yolov3_darknet/model_final
num_classes: 80
use_fine_grained_loss: false
W
wangguanzhong 已提交
12
load_static_weights: True
F
FDInSky 已提交
13 14 15

YOLOv3:
  backbone: DarkNet
16
  neck: YOLOv3FPN
F
FDInSky 已提交
17
  yolo_head: YOLOv3Head
18
  post_process: BBoxPostProcess
F
FDInSky 已提交
19 20 21

DarkNet:
  depth: 53
W
wangguanzhong 已提交
22
  return_idx: [2, 3, 4]
F
FDInSky 已提交
23

24 25 26
YOLOv3FPN:
  feat_channels: [1024, 768, 384]

F
FDInSky 已提交
27
YOLOv3Head:
28 29 30 31 32
  anchors: [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  loss: YOLOv3Loss

YOLOv3Loss:
W
wangguanzhong 已提交
33 34 35
  ignore_thresh: 0.7
  downsample: 32
  label_smooth: true
F
FDInSky 已提交
36

37 38 39 40 41
BBoxPostProcess:
  decode:
    name: YOLOBox
    conf_thresh: 0.005
    downsample_ratio: 32
42
    clip_bbox: true
43 44 45 46 47 48 49 50 51
  nms:
    name: MultiClassNMS
    keep_top_k: 100
    score_threshold: 0.01
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    background_label: -1

F
FDInSky 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
LearningRate:
  base_lr: 0.001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 400000
    - 450000
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

_READER_: 'yolov3_reader.yml'