train_v2.py 10.1 KB
Newer Older
H
hedaoyuan 已提交
1
import sys
2
from os.path import join as join_path
H
hedaoyuan 已提交
3 4
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
import paddle.v2 as paddle
import paddle.v2.layer as layer
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type


def sequence_conv_pool(input,
                       input_size,
                       context_len,
                       hidden_size,
                       name=None,
                       context_start=None,
                       pool_type=None,
                       context_proj_layer_name=None,
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
                       fc_bias_attr=None,
                       fc_act=None,
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
    Text convolution pooling layers helper.

    Text input => Context Projection => FC Layer => Pooling => Output.

    :param name: name of output layer(pooling layer name)
    :type name: basestring
    :param input: name of input layer
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
    :param context_start: context projection length. See
                          context_projection's context_start.
    :type context_start: int or None
    :param pool_type: pooling layer type. See pooling_layer's document.
    :type pool_type: BasePoolingType.
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
    :param context_proj_param_attr: context projection parameter attribute.
                                    None if user don't care.
    :type context_proj_param_attr: ParameterAttribute or None.
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
    :type fc_param_attr: ParameterAttribute or None
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
    :type fc_bias_attr: ParameterAttribute or None
    :param fc_act: fc layer activation type. None means tanh
    :type fc_act: BaseActivation
    :param pool_bias_attr: pooling layer bias attr. None if don't care.
                           False if no bias.
    :type pool_bias_attr: ParameterAttribute or None.
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
    :return: output layer name.
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

    with layer.mixed(
            name=context_proj_layer_name,
            size=input_size * context_len,
            act=activation.Linear(),
            layer_attr=context_attr) as m:
        m += layer.context_projection(
            input=input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
    fl = layer.fc(name=fc_layer_name,
                  input=m,
                  size=hidden_size,
                  act=fc_act,
                  layer_attr=fc_attr,
                  param_attr=fc_param_attr,
                  bias_attr=fc_bias_attr)

    return layer.pooling(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)


def convolution_net(input_dim,
                    class_dim=2,
                    emb_dim=128,
                    hid_dim=128,
                    is_predict=False):
    data = layer.data("word", data_type.integer_value_sequence(input_dim))
    emb = layer.embedding(input=data, size=emb_dim)
    conv_3 = sequence_conv_pool(
        input=emb, input_size=emb_dim, context_len=3, hidden_size=hid_dim)
    conv_4 = sequence_conv_pool(
        input=emb, input_size=emb_dim, context_len=4, hidden_size=hid_dim)
    output = layer.fc(input=[conv_3, conv_4],
                      size=class_dim,
                      act=activation.Softmax())
H
hedaoyuan 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    lbl = layer.data("label", data_type.integer_value(2))
    cost = layer.classification_cost(input=output, label=lbl)
    return cost


def stacked_lstm_net(input_dim,
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3,
                     is_predict=False):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109

    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    is_predict: is predicting or not.
                Some layers is not needed in network when predicting.
    """
    assert stacked_num % 2 == 1

    layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
    fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
    lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
    relu = activation.Relu()
    linear = activation.Linear()

    data = layer.data("word", data_type.integer_value_sequence(input_dim))
    emb = layer.embedding(input=data, size=emb_dim)

    fc1 = layer.fc(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr)
    lstm1 = layer.lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = layer.fc(input=inputs,
                      size=hid_dim,
                      act=linear,
                      param_attr=para_attr,
                      bias_attr=bias_attr)
        lstm = layer.lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = layer.pooling(input=inputs[0], pooling_type=MaxPooling())
    lstm_last = layer.pooling(input=inputs[1], pooling_type=MaxPooling())
    output = layer.fc(input=[fc_last, lstm_last],
                      size=class_dim,
                      act=activation.Softmax(),
                      bias_attr=bias_attr,
                      param_attr=para_attr)

    lbl = layer.data("label", data_type.integer_value(2))
188 189 190 191
    cost = layer.classification_cost(input=output, label=lbl)
    return cost


H
hedaoyuan 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
def data_reader(data_file, dict_file):
    def reader():
        with open(dict_file, 'r') as fdict, open(data_file, 'r') as fdata:
            dictionary = dict()
            for i, line in enumerate(fdict):
                dictionary[line.split('\t')[0]] = i

            for line_count, line in enumerate(fdata):
                label, comment = line.strip().split('\t\t')
                label = int(label)
                words = comment.split()
                word_slot = [dictionary[w] for w in words if w in dictionary]
                yield (word_slot, label)

    return reader
H
hedaoyuan 已提交
207 208


209
if __name__ == '__main__':
H
hedaoyuan 已提交
210 211 212 213 214
    # data file
    train_file = "./data/pre-imdb/train_part_000"
    test_file = "./data/pre-imdb/test_part_000"
    dict_file = "./data/pre-imdb/dict.txt"
    labels = "./data/pre-imdb/labels.list"
215 216 217 218 219

    # init
    paddle.init(use_gpu=True, trainer_count=4)

    # network config
H
hedaoyuan 已提交
220 221 222 223 224 225 226
    dict_dim = len(open(dict_file).readlines())
    class_dim = len(open(labels).readlines())

    # Please choose the way to build the network
    # by uncommenting the corresponding line.
    cost = convolution_net(dict_dim, class_dim=class_dim)
    # cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
227 228 229 230

    # create parameters
    parameters = paddle.parameters.create(cost)

H
hedaoyuan 已提交
231
    # create optimizer
H
hedaoyuan 已提交
232 233 234 235
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=2e-3,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))
236

H
hedaoyuan 已提交
237
    # End batch and end pass event handler
238 239
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
H
hedaoyuan 已提交
240
            if event.batch_id % 100 == 0:
H
hedaoyuan 已提交
241
                print "\nPass %d, Batch %d, Cost %f, %s" % (
242
                    event.pass_id, event.batch_id, event.cost, event.metrics)
H
hedaoyuan 已提交
243 244 245
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
H
hedaoyuan 已提交
246 247 248
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(
                reader=paddle.reader.batched(
H
hedaoyuan 已提交
249
                    data_reader(test_file, dict_file), batch_size=128),
H
hedaoyuan 已提交
250 251
                reader_dict={'word': 0,
                             'label': 1})
H
hedaoyuan 已提交
252
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
253

H
hedaoyuan 已提交
254
    # create trainer
255 256 257 258 259 260
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=adam_optimizer)

    trainer.train(
        reader=paddle.reader.batched(
H
hedaoyuan 已提交
261
            paddle.reader.shuffle(
H
hedaoyuan 已提交
262 263
                data_reader(train_file, dict_file), buf_size=4096),
            batch_size=128),
264 265 266 267
        event_handler=event_handler,
        reader_dict={'word': 0,
                     'label': 1},
        num_passes=10)