nn.py 296.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30
from .. import core
Y
Yu Yang 已提交
31 32

__all__ = [
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
60
    'sequence_unpad',
X
Xin Pan 已提交
61 62 63 64 65 66 67 68
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
69
    'sequence_slice',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
100
    'roi_align',
X
Xin Pan 已提交
101 102 103 104
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
105
    'resize_nearest',
X
Xin Pan 已提交
106 107 108 109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
115
    'margin_rank_loss',
X
Xin Pan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
159
    'space_to_depth',
W
whs 已提交
160
    'affine_grid',
S
sneaxiy 已提交
161
    'sequence_reverse',
162
    'affine_channel',
B
barrierye 已提交
163
    'similarity_focus',
M
minqiyang 已提交
164
    'hash',
D
dengkaipeng 已提交
165
    'grid_sampler',
G
gmcather 已提交
166 167
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
177
       is_test=False,
178
       name=None):
Y
Yu Yang 已提交
179
    """
180
    **Fully Connected Layer**
Y
Yu Yang 已提交
181

182 183 184 185 186 187 188 189
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
190
    to the output as well.
C
caoying03 已提交
191

C
caoying03 已提交
192
    This process can be formulated as follows:
193 194 195

    .. math::

196
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
197 198 199

    In the above equation:

C
caoying03 已提交
200 201 202 203
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
204
    * :math:`Act`: The activation function.
C
caoying03 已提交
205
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
206 207

    Args:
R
ranqiu 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
223 224
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
225
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
226
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
227
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
228

229
    Returns:
F
fengjiayi 已提交
230
        Variable: The transformation result.
231 232

    Raises:
C
caoying03 已提交
233
        ValueError: If rank of the input tensor is less than 2.
234 235 236 237

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
238
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
239
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
240
    """
C
caoying03 已提交
241

C
caoying03 已提交
242
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
243 244 245 246

    dtype = helper.input_dtype()

    mul_results = []
247 248
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
249 250 251
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
252

Y
Yu Yang 已提交
253
        w = helper.create_parameter(
254
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
255
        tmp = helper.create_variable_for_type_inference(dtype)
256
        helper.append_op(
257 258 259
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
260
            outputs={"Out": tmp},
M
mozga-intel 已提交
261 262
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
263 264 265 266
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
267
    else:
X
Xin Pan 已提交
268
        pre_bias = helper.create_variable_for_type_inference(dtype)
269
        helper.append_op(
270 271 272
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
273
            attrs={"use_mkldnn": False})
274 275 276 277
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
278 279


280 281 282
def embedding(input,
              size,
              is_sparse=False,
283
              is_distributed=False,
284 285 286
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
287
    """
288 289
    **Embedding Layer**

290
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
291 292
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
293 294 295

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
296 297

    Args:
298 299 300 301 302
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
303
        is_distributed(bool): Whether to run lookup table from remote parameter server.
304 305
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
306
            with zeros whenever lookup encounters it in :attr:`input`. If
307
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
308 309
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
310
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
311

312 313 314
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
315

316 317
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
318

C
chengduoZH 已提交
319
          dict_size = len(dataset.ids)
320
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
321
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
322 323 324 325 326
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
327
    tmp = helper.create_variable_for_type_inference(dtype)
328 329
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
330 331 332 333 334
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
335 336 337 338 339
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
340 341 342
    return tmp


Y
yi.wu 已提交
343
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
344 345
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
346 347
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
348 349 350 351 352 353 354
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
355 356
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
357
    """
Y
yi.wu 已提交
358
    ${comment}
Y
Yibing Liu 已提交
359 360

    Args:
Y
yi.wu 已提交
361 362
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
363 364 365 366 367 368
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
369
        param_attr(ParamAttr|None): The parameter attribute for the learnable
370
                               hidden-hidden weights.
Y
Yibing Liu 已提交
371 372 373

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
374 375
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
376 377 378 379 380

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
381
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
382 383 384
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
385

386
                              1. `use_peepholes = False`
Y
yi.wu 已提交
387 388
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
389
                              2. `use_peepholes = True`
Y
yi.wu 已提交
390
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
391
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
392
                                 - The shape is (1 x 7D).
C
chengduo 已提交
393 394 395 396 397

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
398 399 400 401 402 403 404 405
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
406 407

    Returns:
Y
Yibing Liu 已提交
408 409
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
410

Y
Yibing Liu 已提交
411
    Examples:
Y
Yibing Liu 已提交
412 413
        .. code-block:: python

Y
Yibing Liu 已提交
414 415
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
416
                                           bias_attr=False)
Y
Yibing Liu 已提交
417 418
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
419
    """
C
chengduo 已提交
420
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
421
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
422
    size = size // 4
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
431 432 433 434
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
435 436 437 438 439 440 441 442 443 444
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
445 446 447

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
448
        inputs=inputs,
Y
Yu Yang 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
465 466 467 468 469 470 471 472 473 474 475
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
476 477
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
478 479 480
    """
    **Dynamic LSTMP Layer**

481 482 483 484 485 486
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
487 488 489 490 491

    The formula is as follows:

    .. math::

492
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
493

494
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
495

496
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
497

498
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
499

500
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
501

502
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
503

504
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
505

Y
Yibing Liu 已提交
506 507 508 509 510 511
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
512
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
513
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
514
          bias vector).
Y
Yibing Liu 已提交
515 516 517
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
518
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
519
    * :math:`h`: The hidden state.
520
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
521 522
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
523
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
524
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
525
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
526 527
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
528 529 530 531

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
532

Y
Yibing Liu 已提交
533 534 535 536 537 538 539 540 541 542 543 544
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
545
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
546 547
                               hidden-hidden weight and projection weight.

548 549
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
550 551
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
552 553
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
554
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
555 556 557 558 559

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
560
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
561 562 563 564 565 566
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
567
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
568 569 570
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
571
                                - The shape is (1 x 7D).
C
chengduo 已提交
572 573 574 575 576

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
577 578 579 580 581 582 583 584 585
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
586
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
587 588
                              default "tanh".
        proj_activation(str): The activation for projection output.
589
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
590 591
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
592 593
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
594 595

    Returns:
596 597 598 599
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
600 601

    Examples:
602

Y
Yibing Liu 已提交
603 604
        .. code-block:: python

605 606 607 608
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
609
            hidden_dim, proj_dim = 512, 256
610
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
611
                                     act=None, bias_attr=None)
612 613 614
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
615 616 617 618
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
619
    """
620

C
chengduo 已提交
621
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
622
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
623
    size = size // 4
Y
Yibing Liu 已提交
624 625 626 627 628 629 630 631 632 633
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
634 635 636 637 638 639
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
668 669 670 671 672 673 674 675 676
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
677
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
678

679
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
680
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
681

G
guosheng 已提交
682 683 684 685 686 687 688 689 690
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
691

G
guosheng 已提交
692
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
693

G
guosheng 已提交
694
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
695 696
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
697 698 699 700
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
701
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
702 703

    Args:
704 705
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
706
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
707
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
708 709
            is the hidden size.
        size(int): The dimension of the gru cell.
710
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
711 712
            hidden-hidden weight matrix. Note:

713
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
714
              :math:`D` is the hidden size.
715
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
716
              The first part are weights of the update gate and reset gate with
717
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
718
              candidate hidden state with shape :math:`(D \\times D)`.
719 720 721 722 723 724 725 726 727 728 729 730

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
731
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
732 733 734
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
735
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
736
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
737 738 739 740
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
741 742

    Returns:
G
guosheng 已提交
743
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
744
            and sequence length is the same with the input.
745

G
guosheng 已提交
746
    Examples:
747

G
guosheng 已提交
748 749
        .. code-block:: python

750 751 752 753
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
754
            hidden_dim = 512
755
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
756 757 758 759 760 761 762 763 764 765
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
766
    batch_size = input.shape[0]
G
guosheng 已提交
767
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
768
    if h_0:
G
guosheng 已提交
769
        assert h_0.shape == (
Y
Yancey 已提交
770 771 772
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
773

X
Xin Pan 已提交
774 775 776 777
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
796 797 798
def gru_unit(input,
             hidden,
             size,
799 800
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
801
             activation='tanh',
802
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
803
    """
804
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
805

806 807
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
808

809
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
810

811
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
812

813
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
814 815

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
816 817 818
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
819 820
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

821 822
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
823 824 825
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
826 827 828

    Args:
        input (Variable): The fc transformed input value of current step.
829
        hidden (Variable): The hidden value of gru unit from previous step.
830
        size (integer): The input dimension value.
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
852 853 854 855
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
856

857 858 859 860 861 862
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
863

864
             # assuming we have x_t_data and prev_hidden of size=10
865
             x_t = fluid.layers.fc(input=x_t_data, size=30)
866 867
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
868 869 870 871 872 873 874 875 876 877 878 879

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
880
    size = size // 3
Y
Yu Yang 已提交
881 882

    # create weight
883 884
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
885

X
Xin Pan 已提交
886 887 888
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
889
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
890
    # create bias
891
    if helper.bias_attr:
Y
Yu Yang 已提交
892 893 894
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
895
        inputs['Bias'] = bias
Y
Yu Yang 已提交
896 897 898

    helper.append_op(
        type='gru_unit',
899
        inputs=inputs,
Y
Yu Yang 已提交
900 901 902 903 904 905
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
906 907
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
908 909 910 911 912
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
913
@templatedoc()
914
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
915 916 917 918 919 920 921
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
922
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
923 924 925 926
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
927 928 929
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
930 931

    """
Y
Yu Yang 已提交
932 933 934 935 936 937
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
938 939 940 941 942 943 944 945
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
961
@templatedoc()
962
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
963 964 965 966 967
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
968

Y
yuyang18 已提交
969
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
970

Y
yuyang18 已提交
971 972 973
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
974
        Variable: ${viterbi_path_comment}
975

Y
yi.wu 已提交
976 977 978 979 980
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
981
    """
Y
Yu Yang 已提交
982 983
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
984 985
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
986 987 988 989 990 991 992 993 994 995
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
996
@templatedoc()
F
fengjiayi 已提交
997
def cos_sim(X, Y):
Y
Yu Yang 已提交
998
    """
Y
yi.wu 已提交
999 1000 1001
    ${comment}

    Args:
1002 1003
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1004

Y
yi.wu 已提交
1005
    Returns:
1006
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1007
    """
F
fengjiayi 已提交
1008
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1009 1010 1011
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1022 1023 1024 1025 1026
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1027
            dropout_implementation="downgrade_in_infer"):
1028 1029 1030 1031 1032
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1033
    training. The dropout operator randomly sets (according to the given dropout
1034 1035 1036 1037
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1038 1039
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1040 1041 1042 1043 1044 1045 1046
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1061

1062 1063

    Returns:
1064
        Variable: A tensor variable is the shape with `x`.
1065 1066

    Examples:
1067

1068 1069
        .. code-block:: python

1070 1071
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1072 1073
    """

F
fengjiayi 已提交
1074
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1075 1076 1077
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1078 1079 1080 1081

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1082 1083 1084 1085 1086
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1087 1088 1089 1090
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1091 1092
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1093
        })
1094 1095 1096
    return out


1097
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1098
    """
Y
Yibing Liu 已提交
1099 1100
    **Cross Entropy Layer**

1101 1102 1103
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1104 1105

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1106
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1107

Y
Yibing Liu 已提交
1108
        .. math::
Y
yangyaming 已提交
1109

Y
Yibing Liu 已提交
1110 1111 1112
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1113 1114
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1115 1116 1117 1118 1119

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1120
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1121 1122 1123
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1124 1125
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1126
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1127

Y
Yibing Liu 已提交
1128
    Args:
Y
yangyaming 已提交
1129
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1130 1131 1132 1133
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1134
        label (Variable|list): the ground truth which is a 2-D tensor. When
1135 1136 1137 1138
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1139
        soft_label (bool): a flag indicating whether to
1140
                                           interpretate the given labels as soft
1141
                                           labels. Default: `False`.
M
minqiyang 已提交
1142 1143
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1144
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1145 1146 1147 1148 1149

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1150 1151 1152 1153 1154
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1155 1156 1157 1158 1159 1160

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1161
    """
F
fengjiayi 已提交
1162
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1163
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1164 1165 1166 1167 1168
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1169 1170
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1171 1172 1173
    return out


F
fengjiayi 已提交
1174
def square_error_cost(input, label):
Y
Yu Yang 已提交
1175
    """
1176 1177
    **Square error cost layer**

1178 1179
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1194 1195
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1196 1197

    Returns:
G
guosheng 已提交
1198
        Variable: The tensor variable storing the element-wise squared error \
1199
                  difference of input and label.
1200 1201 1202 1203 1204 1205 1206 1207

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1208
    """
F
fengjiayi 已提交
1209
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1210
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1217
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1218
    helper.append_op(
F
fengjiayi 已提交
1219 1220
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1221 1222 1223
    return square_out


Y
yi.wu 已提交
1224
@templatedoc()
Y
Yu Yang 已提交
1225 1226 1227 1228
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1229
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1230
    """
Y
yi.wu 已提交
1231
    **Chunk Evaluator**
Y
yi.wu 已提交
1232

Y
yangyaming 已提交
1233
    This function computes and outputs the precision, recall and
1234
    F1-score of chunk detection.
Y
yi.wu 已提交
1235

Y
yi.wu 已提交
1236 1237 1238 1239 1240 1241 1242 1243
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1244

Y
yi.wu 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1270

Y
yi.wu 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1295
    Args:
1296 1297 1298 1299 1300
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1301

Y
yi.wu 已提交
1302
    Returns:
Y
update  
yi.wu 已提交
1303 1304 1305
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1306

Y
yi.wu 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1319
    """
F
fengjiayi 已提交
1320
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1321 1322

    # prepare output
X
Xin Pan 已提交
1323 1324 1325 1326 1327 1328 1329
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1330 1331 1332 1333 1334 1335 1336 1337

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1338 1339 1340 1341
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1342 1343 1344
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1345 1346
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1347
        })
1348 1349
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1350 1351


1352
@templatedoc()
Y
Yu Yang 已提交
1353 1354 1355 1356 1357 1358 1359
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1360 1361
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1362 1363 1364 1365
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1366 1367 1368 1369 1370 1371 1372

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1386

1387 1388
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1389 1390 1391 1392 1393 1394 1395
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1396
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1407
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1408 1409 1410 1411 1412 1413
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1414
def sequence_softmax(input, use_cudnn=False, name=None):
1415 1416 1417
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1418
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1435 1436 1437
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1450 1451
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1452
    softmax_out = helper.create_variable_for_type_inference(dtype)
1453 1454 1455 1456 1457 1458 1459 1460
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1461
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1462
    """
1463
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1464
    has the same shape as the input.
Q
qiaolongfei 已提交
1465

1466 1467 1468 1469 1470 1471
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1472
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1473 1474 1475 1476 1477 1478 1479

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1480
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1481 1482 1483 1484 1485 1486 1487 1488

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1489 1490 1491
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1504 1505
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1506
    softmax_out = helper.create_variable_for_type_inference(dtype)
1507 1508 1509 1510 1511 1512 1513 1514
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1515 1516 1517
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1518 1519
           stride=1,
           padding=0,
1520
           dilation=1,
Y
Yu Yang 已提交
1521 1522 1523
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1524
           use_cudnn=True,
1525 1526
           act=None,
           name=None):
Y
Yu Yang 已提交
1527
    """
C
chengduoZH 已提交
1528
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1529 1530
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1531
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1532 1533 1534 1535 1536 1537 1538
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1539 1540 1541
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1542

1543
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1544

C
chengduoZH 已提交
1545 1546
    .. math::

C
refine  
chengduoZH 已提交
1547
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1548

T
tensor-tang 已提交
1549
    Where:
C
chengduoZH 已提交
1550

1551 1552 1553 1554 1555
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1556
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1557 1558 1559

    Example:

1560 1561
        - Input:

W
weixing02 已提交
1562
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1563

W
weixing02 已提交
1564
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1565

1566
        - Output:
T
tensor-tang 已提交
1567

W
weixing02 已提交
1568
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1569

C
chengduoZH 已提交
1570
        Where
1571 1572

        .. math::
C
chengduoZH 已提交
1573

W
weixing02 已提交
1574 1575
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1576 1577

    Args:
1578
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1579
        num_filters(int): The number of filter. It is as same as the output
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1608 1609
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1610 1611
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1612
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1613
            will be named automatically. Default: None
C
chengduoZH 已提交
1614 1615

    Returns:
G
guosheng 已提交
1616
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1617 1618
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1619
    Raises:
1620 1621
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1622

C
chengduoZH 已提交
1623 1624 1625
    Examples:
        .. code-block:: python

1626 1627
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1628 1629 1630
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1631
    assert param_attr is not False, "param_attr should not be False here."
1632
    l_type = 'conv2d'
X
xzl 已提交
1633 1634
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1635
        l_type = 'depthwise_conv2d'
1636 1637 1638 1639

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1640 1641 1642 1643 1644
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1645
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1646

C
chengduoZH 已提交
1647 1648 1649
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1650
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1651

C
chengduoZH 已提交
1652 1653
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1654 1655

    input_shape = input.shape
M
minqiyang 已提交
1656
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1657 1658

    def _get_default_param_initializer():
C
chengduo 已提交
1659 1660
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1661 1662 1663 1664 1665 1666 1667 1668
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1669
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1685
    helper.append_op(
1686
        type=l_type,
Y
Yu Yang 已提交
1687 1688 1689 1690 1691
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1692 1693 1694
        attrs={
            'strides': stride,
            'paddings': padding,
1695
            'dilations': dilation,
C
chengduoZH 已提交
1696
            'groups': groups,
1697
            'use_cudnn': use_cudnn,
1698
            'use_mkldnn': False,
C
chengduoZH 已提交
1699
        })
Y
Yu Yang 已提交
1700 1701 1702 1703 1704 1705

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1723 1724 1725 1726 1727 1728
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1738 1739
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1740 1741 1742
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1743
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1769
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1770 1771
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1772
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1773 1774
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1775
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1776 1777
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1778
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1779 1780 1781 1782 1783 1784
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1795 1796
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1797 1798
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1799
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1800
            will be named automatically. Default: None.
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1813 1814
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1815 1816 1817
    """

    l_type = 'conv3d'
C
chengduo 已提交
1818
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1829
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1843 1844 1845
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1846 1847 1848 1849 1850 1851 1852 1853
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1854
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1869
            'use_mkldnn': False
C
chengduoZH 已提交
1870 1871
        })

1872
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1873 1874 1875 1876

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1877
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1878
    """
Y
yangyaming 已提交
1879 1880 1881
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1893
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1894 1895 1896 1897 1898
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1899
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1900 1901 1902 1903 1904 1905 1906

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1907 1908
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1909

L
Luo Tao 已提交
1910 1911
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1912
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1913
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1914
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1915 1916 1917 1918 1919 1920 1921

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1922

Y
yangyaming 已提交
1923
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1924 1925 1926 1927 1928
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1929 1930
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1931
    """
F
fengjiayi 已提交
1932
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1933
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1934 1935
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1936 1937 1938 1939 1940 1941

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1942 1943
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1944

Y
yangyaming 已提交
1945 1946 1947 1948 1949
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1950 1951 1952
    return pool_out


C
add doc  
chengduoZH 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1972
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1973 1974 1975 1976 1977
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1978
def sequence_first_step(input):
L
Luo Tao 已提交
1979
    """
L
Luo Tao 已提交
1980
    This function gets the first step of sequence.
L
Luo Tao 已提交
1981 1982 1983 1984

    .. code-block:: text

       x is a 1-level LoDTensor:
1985
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1986 1987 1988 1989 1990
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1991
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1992
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1993

L
Luo Tao 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2003

Y
yangyaming 已提交
2004
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2005 2006 2007
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2008 2009 2010
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2011
def sequence_last_step(input):
L
Luo Tao 已提交
2012
    """
L
Luo Tao 已提交
2013
    This function gets the last step of sequence.
L
Luo Tao 已提交
2014 2015 2016 2017

    .. code-block:: text

       x is a 1-level LoDTensor:
2018
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2019 2020 2021 2022 2023
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2024
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2025
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2026

L
Luo Tao 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2036

Y
yangyaming 已提交
2037
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2038 2039 2040
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2041 2042 2043
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2044 2045 2046 2047
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2048
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2049 2050 2051 2052 2053
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2054

Y
Yibing Liu 已提交
2055 2056
	- Case:

2057
            Given the input Variable **input**:
2058

2059 2060 2061
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2062

2063
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2064

2065
            the output Variable will be
2066

2067 2068 2069
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2070 2071

    NOTE: The first dimension size of **input**, **offset** and **length**
2072
          should be equal. The **offset** should start from 0.
2073

Y
Yibing Liu 已提交
2074
    Args:
2075
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2076
                         sequences.
Y
Yibing Liu 已提交
2077 2078 2079 2080 2081 2082
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2083
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2094
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2095 2096 2097 2098
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2099
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2114
@templatedoc()
Y
Yu Yang 已提交
2115
def pool2d(input,
C
chengduoZH 已提交
2116 2117
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2118 2119
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2120
           global_pooling=False,
C
chengduoZH 已提交
2121
           use_cudnn=True,
2122
           ceil_mode=False,
2123 2124
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2125
    """
F
fengjiayi 已提交
2126
    ${comment}
2127 2128

    Args:
2129 2130 2131
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2132
                          feature, and W is the width of the feature.
2133
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2134
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2135
        pool_type: ${pooling_type_comment}
2136 2137
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2138 2139 2140
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2141
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2142
                        layer will be named automatically.
2143 2144
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2145

2146
    Returns:
F
fengjiayi 已提交
2147
        Variable: The pooling result.
F
fengjiayi 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2161 2162 2163 2164
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2165
                            global_pooling=False)
Y
Yu Yang 已提交
2166 2167 2168 2169 2170
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2171

C
chengduoZH 已提交
2172 2173 2174 2175 2176
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2177 2178 2179 2180
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2181 2182
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2183

C
Add doc  
chengduoZH 已提交
2184
    l_type = 'pool2d'
2185 2186

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2187
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2188
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2189 2190

    helper.append_op(
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2202 2203
            "use_mkldnn": False,
            "exclusive": exclusive,
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2217 2218
           name=None,
           exclusive=True):
2219 2220
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2221
    pooling configurations mentioned in input parameters.
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2234 2235
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2236

2237
    Returns:
2238
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2239 2240 2241 2242 2243
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2244

C
chengduoZH 已提交
2245 2246 2247 2248 2249
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2250 2251 2252
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2253

C
chengduoZH 已提交
2254 2255
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2256

2257 2258
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2259
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2260
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2261 2262

    helper.append_op(
2263
        type=l_type,
Y
Yu Yang 已提交
2264 2265 2266 2267 2268 2269 2270
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2271
            "paddings": pool_padding,
2272
            "use_cudnn": use_cudnn,
2273
            "ceil_mode": ceil_mode,
2274 2275
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2288
               data_layout='NCHW',
Y
Yang Yang 已提交
2289
               in_place=False,
2290 2291
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2292
               moving_variance_name=None,
2293 2294
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2295
    """
Q
qiaolongfei 已提交
2296 2297 2298 2299
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2300

Q
qiaolongfei 已提交
2301
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2302

Q
qiaolongfei 已提交
2303 2304
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2305 2306 2307
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2320 2321

    Args:
Q
qiaolongfei 已提交
2322
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2323 2324 2325 2326
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2327 2328 2329 2330 2331 2332 2333 2334
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2335
        data_layout(string, default NCHW): NCHW|NHWC
2336
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2337 2338 2339 2340
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2341
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2342
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2343 2344

    Returns:
Q
qiaolongfei 已提交
2345
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2346 2347 2348 2349 2350 2351 2352

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2353
    """
C
chengduo 已提交
2354
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2377
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2378

2379 2380
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2381 2382 2383
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2384
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2385
        shape=param_shape,
2386 2387 2388 2389 2390 2391 2392
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2393
            trainable=False,
W
wanghaoshuang 已提交
2394
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2395
        shape=param_shape,
2396 2397
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2398 2399 2400 2401 2402 2403

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2404 2405 2406 2407
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2408

X
Xin Pan 已提交
2409 2410
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2428 2429 2430 2431
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2432
            "use_mkldnn": False,
2433
            "fuse_with_relu": fuse_with_relu
2434
        })
Y
Yu Yang 已提交
2435 2436 2437 2438

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2439
@templatedoc()
G
guosheng 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2450
    ${comment}
G
guosheng 已提交
2451 2452 2453

    The formula is as follows:

Y
yuyang18 已提交
2454
    ..  math::
G
guosheng 已提交
2455 2456 2457 2458 2459 2460 2461

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2462 2463 2464 2465 2466 2467 2468 2469
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2470

G
guosheng 已提交
2471 2472
    Args:
        input(Variable): The input tensor variable.
2473
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2474
            normalization. Default True.
2475
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2476 2477
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2478
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2479
            Default 1.
2480
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2481
            division by zero. Default 1e-05.
G
guosheng 已提交
2482
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2483 2484
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2485 2486
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2487
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2488 2489
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2490
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2491
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2492
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2493 2494 2495
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2496 2497

    Returns:
Y
yuyang18 已提交
2498
        ${y_comment}
G
guosheng 已提交
2499 2500 2501

    Examples:

Y
yuyang18 已提交
2502 2503 2504
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2520
    if shift:
G
guosheng 已提交
2521 2522 2523 2524 2525 2526
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2527 2528 2529 2530 2531
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2547 2548 2549 2550
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2551 2552 2553
                     padding=0,
                     stride=1,
                     dilation=1,
2554
                     groups=None,
C
caoying03 已提交
2555
                     param_attr=None,
2556
                     bias_attr=None,
C
chengduoZH 已提交
2557
                     use_cudnn=True,
2558
                     act=None,
C
caoying03 已提交
2559
                     name=None):
Y
Yu Yang 已提交
2560
    """
2561 2562 2563 2564 2565 2566 2567 2568
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2569 2570
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2571 2572 2573
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2574 2575 2576 2577 2578

    For each input :math:`X`, the equation is:

    .. math::

2579
        Out = \sigma (W \\ast X + b)
2580

2581
    Where:
2582 2583 2584

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2585 2586 2587 2588
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2589

2590 2591 2592 2593
    Example:

        - Input:

2594
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2595

2596
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2597 2598 2599

        - Output:

2600
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2601 2602

        Where
Y
Yu Yang 已提交
2603

2604 2605
        .. math::

2606 2607 2608 2609
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2610 2611

    Args:
2612 2613 2614 2615
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2616 2617 2618 2619
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2648
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2649 2650 2651
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2652
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2653
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2654 2655

    Returns:
2656
        Variable: The tensor variable storing the convolution transpose result.
2657 2658

    Raises:
2659 2660
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2661 2662 2663 2664

    Examples:
       .. code-block:: python

2665 2666
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2667
    """
C
chengduo 已提交
2668
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2669 2670 2671 2672 2673 2674 2675 2676
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2677 2678 2679
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2680 2681 2682
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2683

C
chengduoZH 已提交
2684 2685
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2686

Y
Yu Yang 已提交
2687 2688 2689 2690 2691
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2692

Y
Yu Yang 已提交
2693 2694
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2695

C
chengduoZH 已提交
2696
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2697
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2698
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2699
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2700
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2701 2702 2703
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2704

2705 2706 2707 2708 2709 2710 2711
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2712
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2713
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2714

Y
Yu Yang 已提交
2715 2716 2717
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2718
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2719
    helper.append_op(
2720
        type=op_type,
Y
Yu Yang 已提交
2721 2722
        inputs={'Input': [input],
                'Filter': [img_filter]},
2723
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2724
        attrs={
2725
            'output_size': output_size,
2726 2727 2728 2729 2730
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2731 2732
        })

2733 2734 2735
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2736 2737


2738
def conv3d_transpose(input,
Y
Yu Yang 已提交
2739 2740 2741
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2742 2743 2744
                     padding=0,
                     stride=1,
                     dilation=1,
2745
                     groups=None,
C
caoying03 已提交
2746
                     param_attr=None,
2747
                     bias_attr=None,
C
chengduoZH 已提交
2748
                     use_cudnn=True,
2749
                     act=None,
C
caoying03 已提交
2750
                     name=None):
Y
Yu Yang 已提交
2751
    """
2752
    **Convlution3D transpose layer**
2753

2754
    The convolution3D transpose layer calculates the output based on the input,
2755
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2756 2757 2758 2759 2760 2761
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2762 2763 2764
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2765 2766 2767 2768 2769

    For each input :math:`X`, the equation is:

    .. math::

2770
        Out = \sigma (W \\ast X + b)
2771 2772 2773

    In the above equation:

2774 2775
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2776 2777 2778 2779
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2780

2781 2782 2783 2784
    Example:

        - Input:

2785
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2786

2787
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2788 2789 2790

        - Output:

2791
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2792 2793

        Where
Y
Yu Yang 已提交
2794

2795 2796
        .. math::

2797 2798 2799
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2800 2801

    Args:
2802
        input(Variable): The input image with [N, C, D, H, W] format.
2803 2804 2805
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2806
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2807 2808
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2809
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2810 2811 2812
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2813 2814
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2815
        stride(int|tuple): The stride size. If stride is a tuple, it must
2816 2817
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2818
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2819 2820 2821
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2822 2823 2824 2825 2826
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2836 2837
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2838 2839
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2840 2841
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2842 2843

    Returns:
2844
        Variable: The tensor variable storing the convolution transpose result.
2845 2846

    Raises:
2847 2848
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2849 2850 2851 2852

    Examples:
       .. code-block:: python

2853 2854
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2855
    """
C
chengduo 已提交
2856
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2857 2858
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2859
    if not isinstance(input, Variable):
2860
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2861 2862
    input_channel = input.shape[1]

2863 2864 2865
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2866

C
chengduoZH 已提交
2867 2868 2869
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2870 2871 2872 2873 2874 2875
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2876 2877 2878
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2879

2880
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2881
                         padding[0] - 1) // dilation[0] + 1
2882
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2883
                         padding[1] - 1) // dilation[1] + 1
2884
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2885
                         padding[2] - 1) // dilation[2] + 1
2886
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2887
    else:
2888 2889
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2890

2891
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2892
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2893 2894 2895
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2896
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2897
    helper.append_op(
2898
        type=l_type,
Y
Yu Yang 已提交
2899 2900
        inputs={'Input': [input],
                'Filter': [img_filter]},
2901
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2902 2903 2904 2905
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2906
            'groups': groups,
C
chengduoZH 已提交
2907 2908
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2909

2910 2911
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2912
    return out
Y
yangyaming 已提交
2913 2914


Y
yangyaming 已提交
2915
def sequence_expand(x, y, ref_level=-1, name=None):
2916
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2917 2918 2919 2920
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2921 2922 2923 2924 2925

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2926
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2927
                x.data = [[a], [b], [c], [d]]
2928 2929 2930
                x.dims = [4, 1]

            y is a LoDTensor:
2931 2932
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2933

Y
yangyaming 已提交
2934
            ref_level: 0
2935

Y
yangyaming 已提交
2936
            then output is a 1-level LoDTensor:
2937
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2938
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2939 2940 2941 2942
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2943
                x.data = [[a], [b], [c]]
2944 2945 2946
                x.dims = [3, 1]

            y is a LoDTensor:
2947
                y.lod = [[2, 0, 3]]
2948

Y
yangyaming 已提交
2949
            ref_level: -1
2950

Y
yangyaming 已提交
2951 2952 2953
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2954 2955 2956
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2957 2958
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2959
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2960
                        will be named automatically.
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2971
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2972
    """
Y
yangyaming 已提交
2973
    helper = LayerHelper('sequence_expand', input=x, **locals())
2974
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2975
    tmp = helper.create_variable_for_type_inference(dtype)
2976
    helper.append_op(
Y
yangyaming 已提交
2977 2978 2979 2980 2981
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2982
    return tmp
2983 2984


C
chengduo 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3041
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3042 3043 3044 3045 3046 3047 3048 3049
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3050
@templatedoc()
3051
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3052 3053 3054 3055 3056
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3057 3058 3059
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3060
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3061 3062 3063 3064
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3065 3066 3067
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3068

F
fengjiayi 已提交
3069
    Returns:
M
minqiyang 已提交
3070
        Variable: The padded sequence batch and the original lengths before
3071
                  padding. All sequences has the same length.
M
minqiyang 已提交
3072

F
fengjiayi 已提交
3073 3074 3075 3076 3077 3078 3079
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3080
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3081
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3082 3083 3084 3085 3086
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3087 3088
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3089 3090 3091 3092

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3093 3094 3095 3096 3097 3098
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3099 3100
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3101
        attrs={'padded_length': maxlen})
3102
    return out, length
F
fengjiayi 已提交
3103 3104


3105
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3106
    """
3107
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3108

3109 3110
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3120 3121 3122
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3123
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3124 3125 3126 3127 3128 3129

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3130
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3131 3132 3133 3134 3135 3136

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3137 3138
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3153
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3165 3166 3167 3168 3169 3170 3171 3172 3173
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3174 3175
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3176 3177 3178

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3179 3180

    This layer does the search in beams for one time step. Specifically, it
3181 3182 3183 3184 3185 3186
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3187

3188 3189 3190 3191 3192 3193 3194 3195
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3196

3197
    Args:
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3223

3224
    Returns:
3225 3226
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3227 3228 3229 3230

    Examples:
        .. code-block:: python

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3248 3249 3250 3251
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3252 3253 3254
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3255 3256 3257 3258 3259

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3260
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3278 3279 3280 3281 3282 3283 3284
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3285

3286 3287 3288 3289 3290 3291 3292 3293 3294
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3295

3296 3297 3298 3299 3300 3301
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3302

3303 3304 3305 3306 3307 3308 3309 3310
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3311 3312
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3328 3329 3330 3331
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3332
              param_attr=None,
C
caoying03 已提交
3333 3334
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3335 3336 3337 3338
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3339
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3340

3341
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3342

3343
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3344

3345
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3346 3347 3348

            h_t & = o_t tanh(c_t)

3349 3350 3351 3352 3353 3354
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3355 3356 3357

        .. math::

3358
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3359 3360 3361 3362 3363 3364 3365 3366

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3367
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3368 3369

    Args:
Y
yangyaming 已提交
3370 3371 3372 3373 3374 3375
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3376
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3389 3390
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3391 3392

    Returns:
Y
yangyaming 已提交
3393
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3394 3395

    Raises:
3396 3397 3398 3399
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3400 3401 3402 3403 3404 3405

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3406
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3407
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3408
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3425
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3426 3427 3428 3429
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3430 3431
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3432 3433 3434
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3435
    size = cell_t_prev.shape[1]
3436
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3437 3438
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3439
                param_attr=param_attr,
3440
                bias_attr=bias_attr)
Y
yangyaming 已提交
3441
    dtype = x_t.dtype
X
Xin Pan 已提交
3442 3443
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3453
    return h, c
G
guosheng 已提交
3454 3455


C
caoying03 已提交
3456
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3457
    """
Y
yangyaming 已提交
3458
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3459 3460 3461

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3462
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3463 3464
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3465 3466
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3467
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3468
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3469
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3470 3471
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3472 3473 3474

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3475

G
guosheng 已提交
3476 3477 3478 3479 3480 3481
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3482
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3483 3484 3485 3486
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3487 3488 3489 3490

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3491
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3492 3493 3494
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3495 3496
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3497
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3498 3499
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3500 3501 3502 3503 3504
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3505
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3506 3507 3508 3509
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3510 3511


C
caoying03 已提交
3512
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3513
    """
Y
Yibing Liu 已提交
3514
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3515 3516 3517

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3518 3519 3520
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3521
            must be in the range :math:`[-rank(input), rank(input))`. If
3522
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3523
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3524 3525
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3526
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3527
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3528
                       will be named automatically.
G
guosheng 已提交
3529 3530

    Returns:
Y
Yibing Liu 已提交
3531
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3532

G
guosheng 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3543 3544
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3545 3546 3547 3548 3549 3550 3551

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3552 3553
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3554
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3555 3556
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3557 3558 3559 3560 3561
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3562
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3563 3564 3565 3566
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3567 3568


C
caoying03 已提交
3569
def reduce_max(input, dim=None, keep_dim=False, name=None):
3570
    """
Y
yangyaming 已提交
3571
    Computes the maximum of tensor elements over the given dimension.
3572 3573 3574

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3575
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3576 3577 3578
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3579
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3580 3581
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3582
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3583 3584
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3585 3586 3587

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3588

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3600 3601 3602 3603 3604 3605 3606

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3607 3608
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3609
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3610 3611
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3612 3613 3614 3615 3616
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3617
            'dim': dim if dim != None else [0],
3618 3619 3620 3621 3622 3623
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3624
def reduce_min(input, dim=None, keep_dim=False, name=None):
3625
    """
Y
yangyaming 已提交
3626
    Computes the minimum of tensor elements over the given dimension.
3627 3628 3629

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3630
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3631 3632 3633
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3634
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3635 3636
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3637
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3638 3639
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3640 3641 3642

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3643

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3655 3656 3657 3658 3659 3660 3661

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3662 3663
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3664
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3665 3666
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3667 3668 3669 3670 3671
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3672
            'dim': dim if dim != None else [0],
3673 3674 3675 3676
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3677 3678


3679 3680 3681 3682 3683 3684
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3685
        dim (list|int|None): The dimensions along which the product is performed. If
3686 3687
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3688 3689
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3690 3691 3692
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3693
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3694
            layer will be named automatically.
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3709
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3710
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3711 3712 3713 3714 3715 3716 3717

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3718 3719
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3720
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3721 3722
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3723 3724 3725 3726 3727
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3728
            'dim': dim if dim != None else [0],
3729 3730 3731 3732 3733 3734
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3735
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3736
    """
C
caoying03 已提交
3737
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3738 3739 3740

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3741 3742 3743 3744 3745
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3746
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3747
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3748
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3749 3750
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3751 3752

    Returns:
D
dzhwinter 已提交
3753
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3763 3764
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3780
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3803
    .. math::
3804 3805

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3806 3807 3808 3809 3810

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3811
        x(Variable|list): The input tensor to l2_normalize layer.
3812
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3813 3814
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3815
        epsilon(float): The epsilon value is used to avoid division by zero, \
3816
            the defalut value is 1e-10.
3817
        name(str|None): A name for this layer(optional). If set None, the layer \
3818
            will be named automatically.
C
caoying03 已提交
3819 3820

    Returns:
3821
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3822 3823

    Examples:
3824

C
caoying03 已提交
3825 3826
        .. code-block:: python

3827 3828 3829 3830
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3831 3832
    """

F
fengjiayi 已提交
3833 3834
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3835 3836
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3837 3838
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3839
    helper.append_op(
3840 3841 3842 3843
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3844
        attrs={
3845 3846
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3847 3848
        })
    return out
3849 3850


S
sneaxiy 已提交
3851
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3852
    """
Y
ying 已提交
3853 3854 3855 3856
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3857

C
chengduoZH 已提交
3858
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3859
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3860

3861 3862 3863 3864 3865
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3866
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3867

C
chengduoZH 已提交
3868
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3869
      performs in the following way.
G
guosheng 已提交
3870

3871
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3872
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3873
        last two dimensions and a batched matrix multiply supporting broadcast
3874
        applies on the two tensors.
G
guosheng 已提交
3875

Y
ying 已提交
3876 3877
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3878
    removed after matrix multiplication.
G
guosheng 已提交
3879 3880 3881

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3882 3883 3884
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3885
        alpha (float): The scale of output. Default 1.0.
3886
        name(str|None): A name for this layer(optional). If set None, the layer
3887
            will be named automatically.
G
guosheng 已提交
3888 3889

    Returns:
3890
        Variable: The product Tensor variable.
G
guosheng 已提交
3891

G
guosheng 已提交
3892 3893 3894
    Examples:
        .. code-block:: python

3895
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3896 3897
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3898

3899 3900
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3901

3902 3903
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3904

3905 3906
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3907 3908 3909 3910

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3911 3912
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3913

Y
ying 已提交
3914
            # x: [M], y: [N]
3915
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3916
    """
Y
ying 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3929
            y_shape = y_shape + [1]
Y
ying 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3946
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3947
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3948
    helper.append_op(
3949 3950 3951 3952
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3953 3954 3955
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3956
            'alpha': float(alpha),
S
sneaxiy 已提交
3957
        })
3958
    return out
3959 3960


3961
def topk(input, k, name=None):
Q
qingqing01 已提交
3962 3963 3964 3965
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3966
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3967 3968 3969 3970 3971 3972
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3994 3995 3996
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3997
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3998
                 of input.
3999
        name(str|None): A name for this layer(optional). If set None, the layer
4000
                       will be named automatically.
F
fengjiayi 已提交
4001
                       Default: None
Q
qingqing01 已提交
4002 4003

    Returns:
4004 4005 4006
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4007
        within the last dimension of input.
Q
qingqing01 已提交
4008

F
fengjiayi 已提交
4009 4010
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4011 4012 4013 4014 4015 4016 4017

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4018 4019
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4031
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4032
    """
Y
ying 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4042

Y
ying 已提交
4043
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4044

4045
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4046 4047
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4048
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4049

4050
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4051 4052
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4053

4054 4055 4056
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4057
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4058
                          the length of reference string.
4059
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4060
                                     calculating edit distance.
4061
        name (str): The name of this layer. It is optional.
4062

W
wanghaoshuang 已提交
4063
    Returns:
W
wanghaoshuang 已提交
4064
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4065 4066 4067 4068 4069

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4070
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4071
            cost = fluid.layers.edit_distance(input=x,label=y)
4072
    """
4073
    helper = LayerHelper("edit_distance", **locals())
4074

4075
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4076
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4077 4078
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4079 4080 4081 4082 4083

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4084
            attrs={"tokens": ignored_tokens})
4085 4086 4087 4088 4089
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4090
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4091
            attrs={"tokens": ignored_tokens})
4092 4093
        label = erased_label

4094
    # edit distance op
X
Xin Pan 已提交
4095 4096
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4097 4098 4099 4100
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4101 4102
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4103 4104
        attrs={"normalized": normalized})

4105
    return edit_distance_out, sequence_num
4106 4107 4108 4109 4110


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4111

Y
ying 已提交
4112 4113 4114 4115
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4133
        input.lod = [[4, 4]]
4134 4135 4136 4137 4138 4139 4140

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4141
        output.lod = [[2, 1]]
4142 4143 4144

    Args:

Y
ying 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4154
        name (str): The name of this layer. It is optional.
4155 4156

    Returns:
4157
        Variable: CTC greedy decode result. If all the sequences in result were
4158
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4159 4160 4161 4162 4163

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4164

4165
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4166
    """
4167
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4168
    _, topk_indices = topk(input, k=1)
4169 4170

    # ctc align op
X
Xin Pan 已提交
4171
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4172 4173 4174
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4175
        outputs={"Output": [ctc_out]},
4176 4177
        attrs={"merge_repeated": True,
               "blank": blank})
4178
    return ctc_out
4179 4180


F
fengjiayi 已提交
4181
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4182
    """
4183 4184
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4185
    to compute Connectionist Temporal Classification (CTC) loss.
4186 4187
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4188 4189 4190
    input tensor.

    Args:
4191
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4192 4193 4194 4195
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4196
       label (Variable): The ground truth of variable-length sequence,
4197 4198 4199
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4200 4201
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4202 4203 4204
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4205
         follewed by a mean_op.
W
wanghaoshuang 已提交
4206 4207

    Returns:
4208 4209
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4210 4211

    Examples:
4212

W
wanghaoshuang 已提交
4213
        .. code-block:: python
4214

4215 4216 4217
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4218 4219

    """
F
fengjiayi 已提交
4220
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4221 4222
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4247 4248 4249
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4250 4251 4252 4253 4254
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4255

4256
            out.lod  = [[0, 1, 3]]
4257 4258 4259 4260

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4261 4262 4263 4264 4265 4266 4267
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4268 4269 4270

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4271 4272

    Returns:
4273

4274 4275 4276 4277 4278
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4279
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4280
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4281 4282
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4283
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4284 4285 4286 4287 4288 4289
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4290 4291


4292 4293 4294 4295
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4296 4297 4298 4299 4300 4301
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4302 4303
        num_neg_samples=None,
        name=None):
4304 4305 4306 4307 4308 4309 4310
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4311 4312
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4313
            sample is 1.0.
C
chengduo 已提交
4314 4315 4316 4317 4318 4319 4320 4321 4322
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4323
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4324 4325
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4326

4327
    Returns:
Y
Yibing Liu 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4355
    """
Y
Yang Yu 已提交
4356 4357 4358
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4359 4360

    dim = input.shape[1]
Y
Yang Yu 已提交
4361 4362 4363 4364 4365 4366
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4380 4381 4382
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4383

Y
Yang Yu 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4393 4394 4395

    helper.append_op(
        type='nce',
C
chengduo 已提交
4396
        inputs=inputs,
Y
Yang Yu 已提交
4397 4398 4399 4400 4401 4402
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4403
    return cost / (num_neg_samples + 1)
4404 4405


C
chengduo 已提交
4406 4407 4408 4409 4410 4411
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4412 4413
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4414
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4424

W
weixing02 已提交
4425
    Args:
M
minqiyang 已提交
4426
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4427 4428 4429 4430 4431
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4443 4444 4445 4446 4447 4448 4449 4450

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4451 4452 4453
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4454 4455 4456 4457
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4458 4459
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4460 4461
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4462
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4463 4464 4465 4466 4467
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4468 4469 4470 4471 4472 4473 4474 4475
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4476 4477
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4478
        inputs=inputs,
W
weixing02 已提交
4479 4480 4481 4482 4483 4484
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4485
def transpose(x, perm, name=None):
Y
ying 已提交
4486 4487 4488 4489 4490 4491 4492
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4493 4494 4495
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4496 4497 4498 4499 4500 4501 4502

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4503 4504 4505 4506
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4507
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4508 4509
    """

Y
fix ci.  
ying 已提交
4510
    if len(perm) != len(x.shape):
Y
ying 已提交
4511 4512 4513
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4514 4515 4516 4517 4518 4519
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4520 4521

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4522 4523
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4524
    helper.append_op(
4525
        type='transpose2',
Y
fix ci.  
ying 已提交
4526
        inputs={'X': [x]},
4527 4528
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4529 4530
        attrs={'axis': perm})
    return out
4531 4532


4533 4534 4535 4536 4537 4538 4539
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4540
    """
4541 4542 4543 4544 4545 4546 4547
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4576 4577 4578 4579 4580 4581 4582 4583 4584
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4585 4586 4587
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4588 4589 4590 4591 4592
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4620 4621 4622
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4635
            output.dims = {8, 8}
4636

4637
            output.lod = [[4, 4]]
4638

D
dzhwinter 已提交
4639
     Examples:
4640 4641 4642

        .. code-block:: python

4643 4644
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4645 4646

    """
W
wanghaoshuang 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4657 4658 4659 4660 4661 4662 4663
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4664
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4665
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4666
    helper.append_op(
4667
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4668
    return out
4669 4670


Y
yuyang18 已提交
4671
@templatedoc()
4672
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4673 4674
    """
    ${comment}
4675 4676

    Args:
Y
yuyang18 已提交
4677
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4678 4679
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4680 4681 4682 4683 4684
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4685
        ${out_comment}.
4686 4687

    Examples:
Y
yuyang18 已提交
4688 4689 4690 4691
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4692 4693 4694 4695 4696 4697
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4698
    out = helper.create_variable_for_type_inference(dtype)
4699 4700 4701 4702 4703
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4704
    return helper.append_activation(out)
4705 4706


Y
yuyang18 已提交
4707
@templatedoc()
4708 4709
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4710 4711 4712 4713 4714 4715 4716
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4717 4718

    Args:
Y
yuyang18 已提交
4719 4720
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4721 4722

    Returns:
Y
yuyang18 已提交
4723
        ${out_comment}.
4724 4725
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4726 4727 4728 4729 4730

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4731
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4732 4733 4734 4735 4736 4737
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4738 4739


4740 4741 4742
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4743 4744
                               ignore_index=-100,
                               numeric_stable_mode=False):
4745 4746
    """
    **Softmax With Cross Entropy Operator.**
4747

4748 4749 4750 4751
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4752

4753 4754 4755
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4756

4757 4758 4759
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4760

4761
    The equation is as follows:
4762

4763
    1) Hard label (one-hot label, so every sample has exactly one class)
4764

4765 4766 4767 4768
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4769

4770 4771 4772
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4773

4774 4775 4776 4777
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4790 4791 4792 4793 4794 4795 4796 4797
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4798 4799
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4800
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4801 4802 4803 4804 4805 4806 4807
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4808

4809 4810 4811 4812 4813 4814 4815 4816 4817
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4818 4819
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4820 4821
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4822 4823
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4824 4825 4826 4827 4828 4829
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4830 4831 4832 4833 4834
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4835 4836 4837 4838 4839
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4840 4841
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4842
    For each instance, it computes the smooth L1 loss element by element first
4843
    and then sums all the losses. So the shape of ouput Variable is
4844
    [batch_size, 1].
4845

4846 4847
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4848
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4849
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4850
            L1 loss op with same shape as :attr:`x`.
4851
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4852 4853
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4854
            by this tensor element by element.
4855
        outside_weight (Variable|None): A tensor with rank at least 2. This
4856 4857
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4858
            element by element.
4859
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4860 4861
           scalar with default value 1.0.

4862
    Returns:
4863
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4864 4865 4866 4867 4868

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4869 4870
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4871
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4872
            out = fluid.layers.smooth_l1(x=fc, y=label)
4873
    """
4874

4875
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4876 4877
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4890 4891 4892 4893


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4894
    This layer creates the one-hot representations for input indices.
4895 4896

    Args:
Y
Yibing Liu 已提交
4897 4898
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4899 4900

    Returns:
Y
Yibing Liu 已提交
4901
        Variable: The one-hot representations of input.
4902 4903

    Examples:
C
caoying03 已提交
4904
        .. code-block:: python
4905

Y
Yibing Liu 已提交
4906 4907
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4908 4909
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4910
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4911 4912 4913 4914 4915 4916
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4917 4918


Y
Yu Yang 已提交
4919
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4920
    """
Y
yi.wu 已提交
4921 4922 4923
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4924 4925 4926 4927 4928 4929

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4930 4931
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4932 4933 4934 4935 4936 4937

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4938 4939
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4940 4941
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4942 4943 4944 4945 4946
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4947
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4948
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4949 4950
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4951 4952
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4953 4954 4955
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4956 4957


4958
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4959
    """
C
caoying03 已提交
4960 4961
    Gives a new shape to the input Tensor without changing its data.

4962 4963 4964 4965 4966
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4967

4968
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4969

4970 4971 4972 4973
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4974
    2. 0 means the actual dimension value is going to be copied from the
4975 4976 4977 4978
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4979 4980

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4981
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4982
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4983

4984
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4985 4986
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4987 4988
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4989
    dimensions.
C
caoying03 已提交
4990

4991
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4992 4993 4994 4995
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4996 4997

    Args:
4998
        x(variable): The input tensor.
C
caoying03 已提交
4999 5000
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5001 5002 5003 5004 5005
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5006 5007
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5008 5009 5010 5011 5012 5013 5014
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5015
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5016

5017
    Returns:
G
guosheng 已提交
5018 5019 5020 5021
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5022

X
Xin Pan 已提交
5023 5024 5025
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5026 5027
    Examples:
        .. code-block:: python
G
guosheng 已提交
5028

5029
            data = fluid.layers.data(
5030
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5031
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5032
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5033 5034 5035
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5036
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5037 5038 5039 5040 5041
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5042

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5058
    helper = LayerHelper("reshape2", **locals())
5059 5060
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5061
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5062
    helper.append_op(
5063
        type="reshape2",
X
Xin Pan 已提交
5064
        inputs=inputs,
D
dzhwinter 已提交
5065
        attrs={"shape": shape},
5066 5067
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5068

D
dzhwinter 已提交
5069
    return helper.append_activation(out)
5070

5071

5072
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5073
    """
M
minqiyang 已提交
5074 5075 5076
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5077
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5078

Y
Yibing Liu 已提交
5079 5080
    Examples:
    Case 1:
M
minqiyang 已提交
5081
      Given
Y
Yibing Liu 已提交
5082 5083 5084 5085 5086 5087 5088 5089
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5090
        and
Y
Yibing Liu 已提交
5091 5092 5093
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5094

Y
Yibing Liu 已提交
5095
    Args:
5096
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5097
        axes (list): List of integers, indicating the dimensions to be squeezed.
5098
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5099 5100 5101 5102 5103 5104 5105 5106

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5107
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5108 5109
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5110 5111
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5112
    helper.append_op(
5113
        type="squeeze2",
5114
        inputs={"X": input},
Y
Yibing Liu 已提交
5115
        attrs={"axes": axes},
5116 5117
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5118

5119 5120 5121
    return out


5122
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5123
    """
M
minqiyang 已提交
5124 5125 5126
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5127

M
minqiyang 已提交
5128 5129
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5130
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5131

Y
Yibing Liu 已提交
5132
    Args:
5133
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5134
        axes (list): List of integers, indicating the dimensions to be inserted.
5135
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5136 5137 5138 5139 5140 5141 5142 5143

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5144
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5145 5146
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5147 5148
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5149
    helper.append_op(
5150
        type="unsqueeze2",
5151
        inputs={"X": input},
Y
Yibing Liu 已提交
5152
        attrs={"axes": axes},
5153 5154
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5155

5156 5157
    return out

5158

Y
yangyaming 已提交
5159
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5160
    """
Y
Yibing Liu 已提交
5161
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5162 5163 5164 5165
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5166
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5167 5168 5169 5170 5171 5172

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5173
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5174 5175 5176
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5177
            target_lod: [4, 2]
Y
yangyaming 已提交
5178 5179

            then we get a 1-level LoDTensor:
5180
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5181 5182 5183 5184 5185 5186
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5187
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5188 5189 5190 5191
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5192
                y.data = [[2, 4]]
Y
yangyaming 已提交
5193 5194 5195
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5196
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5197 5198 5199 5200 5201 5202
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5203
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5204 5205 5206 5207
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5208
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5209 5210 5211 5212
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5213
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5214 5215 5216 5217 5218
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5219
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5220
                           from :attr:`y`.
Y
yangyaming 已提交
5221
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5222
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5223 5224

    Returns:
Y
Yibing Liu 已提交
5225
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5226 5227

    Raises:
Y
Yibing Liu 已提交
5228
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5238
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5264
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5293 5294
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5307 5308 5309
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5323 5324 5325 5326


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5327
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5328
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5329

G
guosheng 已提交
5330 5331 5332 5333
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5356
                         The length of :attr:paddings must be
G
guosheng 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5367

G
guosheng 已提交
5368 5369 5370 5371 5372 5373
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5374
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5375 5376 5377 5378 5379 5380 5381
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5382 5383


C
chengduo 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5454
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5455 5456 5457 5458 5459 5460 5461 5462 5463
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5464 5465 5466 5467 5468 5469 5470
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5471 5472
    called label-smoothing regularization (LSR).

5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5496
                              be :math:`(1, class\_num)`.
5497 5498
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5499
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5519
    smooth_label = helper.create_variable_for_type_inference(dtype)
5520 5521 5522 5523 5524 5525 5526
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5527 5528


Y
yi.wu 已提交
5529
@templatedoc()
5530 5531
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5532
    ${comment}
5533 5534

    Args:
Y
yi.wu 已提交
5535 5536
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5537 5538 5539
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5540 5541

    Returns:
Y
update  
yi.wu 已提交
5542
        Variable: ${out_comment}.
5543 5544

    Examples:
5545 5546
        .. code-block:: python

5547
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5548 5549 5550
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5551 5552
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5565 5566


J
jerrywgz 已提交
5567 5568 5569 5570 5571 5572
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5573 5574
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5591 5592 5593
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5594 5595 5596 5597 5598 5599
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5600
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5641 5642
        .. code-block:: python

W
whs 已提交
5643 5644 5645 5646
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5647
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5648 5649 5650 5651 5652 5653
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5654 5655


5656 5657 5658 5659
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5660 5661
                 resample='BILINEAR',
                 actual_shape=None):
5662
    """
Q
qiaolongfei 已提交
5663
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5664

5665
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5666 5667 5668
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5669

5670
        'BILINEAR' : Bilinear interpolation
5671
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5672

5673
    Args:
5674
        input (Variable): The input tensor of image resize layer,
5675 5676
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5677
        out_shape(list|tuple|Variable|None): Output shape of image resize
5678 5679
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5680
        scale(float|None): The multiplier for the input height or width.
5681 5682 5683
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5684 5685
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5686 5687
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5688
                       Default: 'BILINEAR'
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5702 5703

    Returns:
Q
update  
qiaolongfei 已提交
5704 5705
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5706

5707 5708 5709 5710 5711 5712 5713 5714
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5715 5716 5717
    Examples:
        .. code-block:: python

5718
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5719
    """
5720 5721 5722 5723
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5724 5725
    if resample not in resample_methods:
        raise ValueError(
5726
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5727
        )
5728
    if out_shape is None and scale is None:
5729
        raise ValueError("One of out_shape and scale must not be None.")
5730
    helper = LayerHelper('interpolate', **locals())
5731
    dtype = helper.input_dtype()
5732 5733 5734 5735

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5736 5737 5738
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5739
    if out_shape is not None:
5740 5741 5742 5743
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5744
            inputs['OutSize'] = out_shape
5745 5746 5747 5748 5749 5750 5751 5752
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5753 5754 5755 5756
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5757 5758 5759 5760 5761
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5762
    out = helper.create_variable_for_type_inference(dtype)
5763
    helper.append_op(
5764
        type='interpolate',
5765
        inputs=inputs,
5766
        outputs={"Out": out},
5767 5768 5769 5770 5771
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5772
    return out
F
stash  
fengjiayi 已提交
5773 5774


5775
@templatedoc(op_type="interpolate")
5776 5777 5778 5779 5780
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5781
    """
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5794 5795 5796 5797 5798

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5799

Y
yuyang18 已提交
5800 5801 5802 5803 5804
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5818 5819 5820

    Returns:
        ${out_comment}.
5821 5822
    """

5823
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5824 5825


5826
@templatedoc(op_type="interpolate")
5827 5828 5829 5830 5831
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5832
    """
5833 5834 5835 5836 5837 5838 5839
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5840 5841 5842 5843 5844

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5845

Y
yuyang18 已提交
5846 5847 5848 5849 5850
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5864 5865 5866

    Returns:
        ${out_comment}.
5867 5868
    """

5869
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5870 5871 5872 5873


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5874 5875 5876
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5877 5878 5879 5880 5881 5882 5883
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5884
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5885

5886
    Returns:
Q
update  
qiaolongfei 已提交
5887
        Variable: The output is a 4-D tensor of the shape
5888
        (num_batches, channls, out_h, out_w).
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5899 5900 5901
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5902 5903 5904
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5905 5906
def gather(input, index):
    """
Q
qiaolongfei 已提交
5907 5908
    **Gather Layer**

5909
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5910 5911 5912 5913
    of X indexed by `index` and concatenate them together.

    .. math::

5914
        Out = X[Index]
W
whs 已提交
5915 5916 5917 5918 5919 5920 5921


    .. code-block:: text


                Given:

5922 5923
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5934
        input (Variable): The source input with rank>=1.
W
whs 已提交
5935 5936 5937 5938 5939 5940
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5941

W
whs 已提交
5942 5943 5944 5945 5946 5947
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5948
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5949 5950 5951 5952 5953 5954 5955 5956
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5988
    out = helper.create_variable_for_type_inference(dtype)
5989 5990 5991 5992 5993 5994 5995 5996 5997
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6048
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6071

6072 6073 6074
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6075
    """
F
stash  
fengjiayi 已提交
6076
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6077
    dtype = x.dtype
X
Xin Pan 已提交
6078
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6079
    if seed is None:
6080
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6081
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6082
    if isinstance(seed, int):
F
fengjiayi 已提交
6083 6084 6085 6086 6087
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6088 6089 6090 6091
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6092
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6093 6094
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6095 6096
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6097
    return out
W
whs 已提交
6098 6099


6100
def log(x, name=None):
W
wanghaoshuang 已提交
6101 6102 6103 6104 6105
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6106
        Out = \\ln(x)
W
wanghaoshuang 已提交
6107 6108

    Args:
6109
        x (Variable): Input tensor.
6110 6111
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6112 6113 6114 6115 6116 6117 6118 6119

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6120
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6121 6122
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6123
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6124
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6125
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6126 6127 6128
    return out


6129
def relu(x, name=None):
W
wanghaoshuang 已提交
6130 6131
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6132
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6133 6134 6135 6136
    the tensor elementwise.

    .. math::

6137
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6138 6139

    Args:
6140
        x (Variable): The input tensor.
6141 6142
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6143 6144 6145 6146 6147 6148 6149 6150

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6151
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6152 6153
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6154
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6155
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6156
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6157
    return out
6158 6159


W
whs 已提交
6160 6161 6162
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6163 6164 6165 6166
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6167
    .. math::
6168 6169

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6170

6171
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6172 6173 6174 6175 6176
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6177
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6178
                           Its shape should be the same as input.
6179
        num_classes (int): The possible number of labels.
W
whs 已提交
6180 6181 6182 6183

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6184
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6185 6186 6187 6188

    Examples:

        .. code-block:: python
6189

W
whs 已提交
6190 6191 6192 6193
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6194 6195 6196
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6197 6198
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6199 6200
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6201
        outputs={
W
whs 已提交
6202 6203 6204
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6205 6206 6207
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6282
                    isinstance(shape, Variable)):
6283 6284 6285 6286 6287
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6288
    out = helper.create_variable_for_type_inference(x.dtype)
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6306 6307


W
whs 已提交
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6426 6427 6428 6429 6430 6431 6432 6433
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6434

6435 6436
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6437

6438 6439 6440 6441
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6442

6443 6444 6445 6446 6447
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6448 6449 6450

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6486
    out = helper.create_variable_for_type_inference("float32")
6487 6488 6489 6490 6491 6492 6493 6494

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6495 6496


M
minqiyang 已提交
6497 6498
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6499
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6500
    which compares left score and right score passed in.
M
minqiyang 已提交
6501
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6502 6503 6504 6505 6506 6507

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6508
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6509 6510
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6511
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6512 6513 6514
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6515
       Variable: The ranking loss.
M
minqiyang 已提交
6516
    Raises:
M
minqiyang 已提交
6517
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6518 6519 6520 6521 6522 6523 6524
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6525
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6526 6527 6528 6529 6530 6531
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6532 6533
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6559

W
whs 已提交
6560 6561
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6562

W
whs 已提交
6563
      Case 0:
M
minqiyang 已提交
6564

W
whs 已提交
6565 6566 6567
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6568

W
whs 已提交
6569 6570 6571
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6572

W
whs 已提交
6573
      Case 1:
M
minqiyang 已提交
6574

W
whs 已提交
6575 6576
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6577

W
whs 已提交
6578 6579 6580
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6581

W
whs 已提交
6582
      Case 2:
M
minqiyang 已提交
6583

W
whs 已提交
6584 6585
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6586

W
whs 已提交
6587 6588 6589
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6590 6591


W
whs 已提交
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6618
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6647
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6670
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6717
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6742
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6766
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6767 6768 6769 6770 6771 6772 6773 6774
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6789
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6790
                        will be named automatically.
J
jerrywgz 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6818
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6842
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6865
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6887
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6888 6889 6890 6891 6892 6893 6894 6895
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6909

6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6920 6921
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6937
        ValueError: If axis is not in range [0, rank(x)].
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6954 6955
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6956
    helper.append_op(
6957
        type='flatten2',
6958
        inputs={"X": x},
6959 6960
        outputs={'Out': out,
                 'XShape': x_shape},
6961 6962
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6963 6964


C
chenweihang 已提交
6965
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6966
    """
C
chenweihang 已提交
6967
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6968
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6969 6970
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6971

C
chenweihang 已提交
6972 6973 6974 6975
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6976
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6977 6978 6979 6980 6981 6982
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6983
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6984 6985 6986
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6987 6988 6989
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7001 7002
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7003 7004 7005 7006 7007 7008
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7009
    return out
7010

7011

S
sneaxiy 已提交
7012 7013 7014 7015 7016 7017 7018 7019 7020
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7021

S
sneaxiy 已提交
7022
    .. math::
7023

S
sneaxiy 已提交
7024 7025 7026
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7027
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7028 7029 7030 7031
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7032 7033 7034
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7035 7036
    Returns:
        Variable: The output sequence mask.
7037

S
sneaxiy 已提交
7038 7039
    """

Q
qingqing01 已提交
7040
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7041
    if name is None:
X
Xin Pan 已提交
7042
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7043
    else:
X
Xin Pan 已提交
7044
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7045

Q
qingqing01 已提交
7046 7047 7048
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7049 7050
        outputs={'Y': out},
        attrs={
7051
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7052 7053 7054
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7055 7056


X
Xin Pan 已提交
7057
def stack(x, axis=0):
S
sneaxiy 已提交
7058 7059 7060 7061
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7062 7063 7064 7065 7066 7067 7068

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7069
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7070
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7071 7072

    Args:
7073
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7074
        axis (int|None): The axis along which all inputs are stacked.
7075

S
sneaxiy 已提交
7076 7077
    Returns:
        Variable: The stacked variable.
7078

S
sneaxiy 已提交
7079 7080
    """

X
Xin Pan 已提交
7081 7082 7083 7084 7085 7086
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7087
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7088
    helper.append_op(
S
sneaxiy 已提交
7089 7090
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7091

X
Xin Pan 已提交
7092
    return out
D
dzhwinter 已提交
7093 7094 7095 7096 7097 7098 7099


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7100

D
dzhwinter 已提交
7101 7102 7103
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7104
    raised.
D
dzhwinter 已提交
7105 7106

    Args:
M
minqiyang 已提交
7107
        x (Variable): Input variable.
D
dzhwinter 已提交
7108 7109
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7110

D
dzhwinter 已提交
7111 7112
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7113

D
dzhwinter 已提交
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7125
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7126 7127 7128 7129 7130 7131 7132 7133

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7146

W
whs 已提交
7147 7148 7149 7150
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7151

W
whs 已提交
7152
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7153

W
whs 已提交
7154
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7155

W
whs 已提交
7156 7157 7158 7159
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7160

W
whs 已提交
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7177
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7178 7179 7180 7181 7182 7183
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7184 7185


G
fix  
gongweibao 已提交
7186 7187 7188
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7189
@templatedoc()
G
fix  
gongweibao 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7199
    ${comment}
G
fix  
gongweibao 已提交
7200 7201

    Args:
G
gongweibao 已提交
7202 7203 7204
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7205
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7206 7207 7208
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7209 7210
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7211
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7212 7213 7214 7215

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7216
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7233 7234


G
gongweibao 已提交
7235
@templatedoc()
X
Xin Pan 已提交
7236
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7237
    """
G
gongweibao 已提交
7238
    ${comment}
G
fix  
gongweibao 已提交
7239 7240

    Args:
G
gongweibao 已提交
7241 7242 7243 7244
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7245 7246 7247
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7248
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7249 7250 7251 7252

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7253
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7264
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7265 7266 7267 7268 7269
        })

    return out


G
gongweibao 已提交
7270
@templatedoc()
G
fix  
gongweibao 已提交
7271
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7272
    """
G
gongweibao 已提交
7273
    ${comment}
G
fix  
gongweibao 已提交
7274 7275

    Args:
G
gongweibao 已提交
7276 7277 7278 7279
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7280
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7281 7282

    Returns:
G
gongweibao 已提交
7283
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7284 7285 7286 7287

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7288
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7300
@templatedoc()
G
fix  
gongweibao 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7310
    ${comment}
G
fix  
gongweibao 已提交
7311 7312

    Args:
G
gongweibao 已提交
7313 7314
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7315
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7316 7317 7318 7319
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7320
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7321 7322

    Returns:
G
gongweibao 已提交
7323
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7324 7325 7326
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7327
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7346
@templatedoc()
X
Xin Pan 已提交
7347
def sum(x):
G
fix  
gongweibao 已提交
7348
    """
G
gongweibao 已提交
7349
    ${comment}
G
fix  
gongweibao 已提交
7350 7351

    Args:
G
gongweibao 已提交
7352
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7353 7354

    Returns:
G
gongweibao 已提交
7355
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7356 7357 7358
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7359 7360
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7361 7362 7363 7364
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7365
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7366 7367 7368 7369

    return out


G
gongweibao 已提交
7370
@templatedoc()
G
fix  
gongweibao 已提交
7371 7372
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7373
    ${comment}
G
fix  
gongweibao 已提交
7374 7375

    Args:
G
gongweibao 已提交
7376 7377 7378 7379
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7380 7381

    Returns:
G
gongweibao 已提交
7382
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7383 7384 7385 7386

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7387 7388
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7400
@templatedoc()
G
fix  
gongweibao 已提交
7401 7402
def shape(input):
    """
G
gongweibao 已提交
7403
    ${comment}
G
fix  
gongweibao 已提交
7404 7405

    Args:
G
gongweibao 已提交
7406
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7407 7408

    Returns:
G
gongweibao 已提交
7409
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7410 7411 7412 7413

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7414 7415
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7416
    helper.append_op(
G
fix  
gongweibao 已提交
7417
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7418 7419

    return out
G
merge  
gongweibao 已提交
7420 7421


S
sneaxiy 已提交
7422 7423 7424 7425 7426 7427 7428 7429
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7430 7431
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7432
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7433 7434 7435
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7436

S
sneaxiy 已提交
7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7448
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7449 7450 7451 7452 7453 7454 7455 7456
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7457
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7458
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7459 7460 7461 7462 7463 7464

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7465
    if name is None:
X
Xin Pan 已提交
7466
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7467 7468 7469
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7480
    return helper.append_activation(out)
S
sneaxiy 已提交
7481 7482


X
Xin Pan 已提交
7483
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7484 7485 7486
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7487
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7488 7489 7490
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7491
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7492 7493 7494
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7495
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7496 7497 7498
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7499
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7500 7501 7502
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7503
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7504 7505 7506
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7507
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7519 7520
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7521
        ])
M
minqiyang 已提交
7522 7523


7524
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7525 7526
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7527 7528
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7529 7530 7531

    if out is None:
        if name is None:
X
Xin Pan 已提交
7532
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7548
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7567
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7586
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7605
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7640 7641 7642 7643
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7672 7673 7674 7675
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7676 7677 7678 7679 7680 7681 7682 7683

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7702
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7732
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7733 7734 7735 7736 7737 7738 7739 7740 7741
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7742 7743
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7766
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7796
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7807 7808


J
JiabinYang 已提交
7809
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7810
    """
J
JiabinYang 已提交
7811
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7812
    
J
JiabinYang 已提交
7813
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7814
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7815
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7816 7817
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7818
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7819 7820 7821
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7822

J
JiabinYang 已提交
7823 7824 7825 7826 7827 7828 7829
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7830
    Args:
J
JiabinYang 已提交
7831
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7832
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7833 7834

    Returns:
J
JiabinYang 已提交
7835
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7836 7837

    Raises:
J
JiabinYang 已提交
7838
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7839 7840 7841 7842 7843 7844

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7845
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7846
                x=data, blocksize=2)
J
JiabinYang 已提交
7847 7848
    """

J
JiabinYang 已提交
7849
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7850

J
JiabinYang 已提交
7851 7852
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7853 7854

    if name is None:
J
JiabinYang 已提交
7855 7856
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7857 7858 7859 7860 7861
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7862
        type="space_to_depth",
J
JiabinYang 已提交
7863
        inputs={"X": x},
J
JiabinYang 已提交
7864
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7865
        outputs={"Out": out})
J
JiabinYang 已提交
7866 7867
    return out

J
JiabinYang 已提交
7868

S
sneaxiy 已提交
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7883
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7894 7895


7896 7897 7898 7899 7900 7901
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7902

7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7922
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7935 7936


B
barrierye 已提交
7937 7938
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
7939
    SimilarityFocus Operator
B
barrierye 已提交
7940 7941

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
7942
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
7943
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
7944
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
7945 7946 7947 7948
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
7949 7950 7951
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
7952 7953
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
7954 7955 7956 7957
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8007 8008 8009
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8010
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8011
            1, 2 or 3.
B
barrierye 已提交
8012
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8013 8014 8015 8016 8017 8018 8019 8020

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8021 8022
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8035 8036 8037 8038 8039
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8040 8041 8042 8043 8044 8045 8046
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8047 8048


M
minqiyang 已提交
8049 8050
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8051 8052
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8053 8054
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8093
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8094
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8095 8096 8097 8098 8099 8100 8101 8102 8103

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8104 8105
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8106 8107
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8108 8109 8110 8111 8112 8113 8114
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8115 8116


D
dengkaipeng 已提交
8117
@templatedoc()
8118 8119
def grid_sampler(x, grid, name=None):
    """
8120 8121 8122 8123 8124 8125 8126
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8165 8166

    Args:
8167 8168 8169
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8170 8171

    Returns:
8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8182 8183 8184 8185 8186 8187 8188 8189 8190
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8191
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8192 8193
    ipts = {'X': x, 'Grid': grid}

8194
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8195 8196 8197
    return out


G
gmcather 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out