train_v2.py 9.3 KB
Newer Older
H
hedaoyuan 已提交
1
import sys
2
from os.path import join as join_path
H
hedaoyuan 已提交
3 4
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
5 6 7
import paddle.v2.layer as layer
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type
H
hedaoyuan 已提交
8 9
import paddle.v2.dataset.imdb as imdb
import paddle.v2 as paddle
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121


def sequence_conv_pool(input,
                       input_size,
                       context_len,
                       hidden_size,
                       name=None,
                       context_start=None,
                       pool_type=None,
                       context_proj_layer_name=None,
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
                       fc_bias_attr=None,
                       fc_act=None,
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
    Text convolution pooling layers helper.

    Text input => Context Projection => FC Layer => Pooling => Output.

    :param name: name of output layer(pooling layer name)
    :type name: basestring
    :param input: name of input layer
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
    :param context_start: context projection length. See
                          context_projection's context_start.
    :type context_start: int or None
    :param pool_type: pooling layer type. See pooling_layer's document.
    :type pool_type: BasePoolingType.
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
    :param context_proj_param_attr: context projection parameter attribute.
                                    None if user don't care.
    :type context_proj_param_attr: ParameterAttribute or None.
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
    :type fc_param_attr: ParameterAttribute or None
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
    :type fc_bias_attr: ParameterAttribute or None
    :param fc_act: fc layer activation type. None means tanh
    :type fc_act: BaseActivation
    :param pool_bias_attr: pooling layer bias attr. None if don't care.
                           False if no bias.
    :type pool_bias_attr: ParameterAttribute or None.
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
    :return: output layer name.
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

    with layer.mixed(
            name=context_proj_layer_name,
            size=input_size * context_len,
            act=activation.Linear(),
            layer_attr=context_attr) as m:
        m += layer.context_projection(
            input=input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
    fl = layer.fc(name=fc_layer_name,
                  input=m,
                  size=hidden_size,
                  act=fc_act,
                  layer_attr=fc_attr,
                  param_attr=fc_param_attr,
                  bias_attr=fc_bias_attr)

    return layer.pooling(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)


def convolution_net(input_dim,
                    class_dim=2,
                    emb_dim=128,
                    hid_dim=128,
                    is_predict=False):
    data = layer.data("word", data_type.integer_value_sequence(input_dim))
    emb = layer.embedding(input=data, size=emb_dim)
    conv_3 = sequence_conv_pool(
        input=emb, input_size=emb_dim, context_len=3, hidden_size=hid_dim)
    conv_4 = sequence_conv_pool(
        input=emb, input_size=emb_dim, context_len=4, hidden_size=hid_dim)
    output = layer.fc(input=[conv_3, conv_4],
                      size=class_dim,
                      act=activation.Softmax())
H
hedaoyuan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    lbl = layer.data("label", data_type.integer_value(2))
    cost = layer.classification_cost(input=output, label=lbl)
    return cost


def stacked_lstm_net(input_dim,
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3,
                     is_predict=False):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109

    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    is_predict: is predicting or not.
                Some layers is not needed in network when predicting.
    """
    assert stacked_num % 2 == 1

    layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
    fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
    lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
    relu = activation.Relu()
    linear = activation.Linear()

    data = layer.data("word", data_type.integer_value_sequence(input_dim))
    emb = layer.embedding(input=data, size=emb_dim)

    fc1 = layer.fc(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr)
    lstm1 = layer.lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = layer.fc(input=inputs,
                      size=hid_dim,
                      act=linear,
                      param_attr=para_attr,
                      bias_attr=bias_attr)
        lstm = layer.lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = layer.pooling(input=inputs[0], pooling_type=MaxPooling())
    lstm_last = layer.pooling(input=inputs[1], pooling_type=MaxPooling())
    output = layer.fc(input=[fc_last, lstm_last],
                      size=class_dim,
                      act=activation.Softmax(),
                      bias_attr=bias_attr,
                      param_attr=para_attr)

    lbl = layer.data("label", data_type.integer_value(2))
189 190 191 192 193 194 195 196 197
    cost = layer.classification_cost(input=output, label=lbl)
    return cost


if __name__ == '__main__':
    # init
    paddle.init(use_gpu=True, trainer_count=4)

    # network config
H
hedaoyuan 已提交
198 199 200 201
    print 'load dictionary...'
    word_dict = imdb.word_dict()
    dict_dim = len(word_dict)
    class_dim = 2
H
hedaoyuan 已提交
202 203 204 205 206

    # Please choose the way to build the network
    # by uncommenting the corresponding line.
    cost = convolution_net(dict_dim, class_dim=class_dim)
    # cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
207 208 209 210

    # create parameters
    parameters = paddle.parameters.create(cost)

H
hedaoyuan 已提交
211
    # create optimizer
H
hedaoyuan 已提交
212 213 214 215
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=2e-3,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))
216

H
hedaoyuan 已提交
217
    # End batch and end pass event handler
218 219
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
H
hedaoyuan 已提交
220
            if event.batch_id % 100 == 0:
H
hedaoyuan 已提交
221
                print "\nPass %d, Batch %d, Cost %f, %s" % (
222
                    event.pass_id, event.batch_id, event.cost, event.metrics)
H
hedaoyuan 已提交
223 224 225
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
H
hedaoyuan 已提交
226 227 228
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(
                reader=paddle.reader.batched(
H
hedaoyuan 已提交
229
                    lambda: imdb.test(word_dict), batch_size=128),
H
hedaoyuan 已提交
230 231
                reader_dict={'word': 0,
                             'label': 1})
H
hedaoyuan 已提交
232
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
233

H
hedaoyuan 已提交
234
    # create trainer
235 236 237 238 239 240
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=adam_optimizer)

    trainer.train(
        reader=paddle.reader.batched(
H
hedaoyuan 已提交
241
            paddle.reader.shuffle(
H
hedaoyuan 已提交
242 243
                lambda: imdb.train(word_dict), buf_size=1000),
            batch_size=100),
244 245 246 247
        event_handler=event_handler,
        reader_dict={'word': 0,
                     'label': 1},
        num_passes=10)