nn.py 326.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
62
    'sequence_unpad',
X
Xin Pan 已提交
63 64 65 66 67 68 69 70
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
71
    'sequence_slice',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
89
    'group_norm',
X
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
103
    'roi_align',
X
Xin Pan 已提交
104 105 106 107
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
108
    'resize_nearest',
X
Xin Pan 已提交
109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
115
    'selu',
X
Xin Pan 已提交
116 117 118
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
119
    'margin_rank_loss',
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
163
    'space_to_depth',
W
whs 已提交
164
    'affine_grid',
S
sneaxiy 已提交
165
    'sequence_reverse',
166
    'affine_channel',
B
barrierye 已提交
167
    'similarity_focus',
M
minqiyang 已提交
168
    'hash',
D
dengkaipeng 已提交
169
    'grid_sampler',
G
gmcather 已提交
170 171
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
172
    'bilinear_tensor_product',
C
chengduo 已提交
173 174
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
175
    'lstm',
Y
Yu Yang 已提交
176 177
]

J
jerrywgz 已提交
178 179
kIgnoreIndex = -100

Y
Yu Yang 已提交
180 181 182 183 184 185 186

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
187
       is_test=False,
188
       name=None):
Y
Yu Yang 已提交
189
    """
190
    **Fully Connected Layer**
Y
Yu Yang 已提交
191

192 193 194 195 196 197 198 199
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
200
    to the output as well.
C
caoying03 已提交
201

C
caoying03 已提交
202
    This process can be formulated as follows:
203 204 205

    .. math::

206
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
207 208 209

    In the above equation:

C
caoying03 已提交
210 211 212 213
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
214
    * :math:`Act`: The activation function.
C
caoying03 已提交
215
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
216 217

    Args:
R
ranqiu 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
233 234
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
235
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
236
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
237
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
238

239
    Returns:
F
fengjiayi 已提交
240
        Variable: The transformation result.
241 242

    Raises:
C
caoying03 已提交
243
        ValueError: If rank of the input tensor is less than 2.
244 245 246 247

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
248
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
249
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
250
    """
C
caoying03 已提交
251

C
caoying03 已提交
252
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
253 254 255 256

    dtype = helper.input_dtype()

    mul_results = []
257 258
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
259 260 261
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
262

Y
Yu Yang 已提交
263
        w = helper.create_parameter(
264
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
265
        tmp = helper.create_variable_for_type_inference(dtype)
266
        helper.append_op(
267 268 269
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
270
            outputs={"Out": tmp},
M
mozga-intel 已提交
271 272
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
273 274 275 276
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
277
    else:
X
Xin Pan 已提交
278
        pre_bias = helper.create_variable_for_type_inference(dtype)
279
        helper.append_op(
280 281 282
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
283
            attrs={"use_mkldnn": False})
284 285 286 287
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
288 289


290 291 292
def embedding(input,
              size,
              is_sparse=False,
293
              is_distributed=False,
294 295 296
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
297
    """
298 299
    **Embedding Layer**

300
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
301 302
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
303 304 305

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
306 307

    Args:
308 309 310 311 312
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
313
        is_distributed(bool): Whether to run lookup table from remote parameter server.
314 315
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
316
            with zeros whenever lookup encounters it in :attr:`input`. If
317
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
318 319
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
320
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
321

322 323 324
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
325

326 327
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
328

C
chengduoZH 已提交
329
          dict_size = len(dataset.ids)
330
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
331
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
332 333 334
    """

    helper = LayerHelper('embedding', **locals())
335 336 337
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
338 339
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
340 341
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
342
    tmp = helper.create_variable_for_type_inference(dtype)
343 344
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
345 346 347 348 349
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
350 351 352
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
353
            'remote_prefetch': remote_prefetch,
354 355
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
356 357 358
    return tmp


W
wopeizl 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
375

W
wopeizl 已提交
376 377 378 379 380 381 382 383 384 385 386
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
387

W
wopeizl 已提交
388 389 390 391
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
392

W
wopeizl 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
479 480


P
phlrain 已提交
481 482 483 484 485 486
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
487
         dropout_prob=0.0,
P
phlrain 已提交
488 489 490 491 492
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
493
    """
P
phlrain 已提交
494
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
495 496 497 498 499

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
539 540
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
541 542 543 544 545 546
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
547
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
548

L
liuhongyu 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
574
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
575 576 577 578 579 580
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
581 582 583
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
643 644 645 646 647 648 649 650 651 652 653
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
654 655
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
656 657 658
    """
    **Dynamic LSTMP Layer**

659 660 661 662 663 664
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
665 666 667 668 669

    The formula is as follows:

    .. math::

670
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
671

672
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
673

674
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
675

676
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
677

678
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
679

680
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
681

682
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
683

Y
Yibing Liu 已提交
684 685 686 687 688 689
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
690
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
691
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
692
          bias vector).
Y
Yibing Liu 已提交
693 694 695
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
696
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
697
    * :math:`h`: The hidden state.
698
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
699 700
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
701
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
702
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
703
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
704 705
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
706 707 708 709

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
710

Y
Yibing Liu 已提交
711 712 713 714 715 716 717 718 719 720 721 722
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
723
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
724 725
                               hidden-hidden weight and projection weight.

726 727
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
728 729
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
730 731
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
732
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
733 734 735 736 737

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
738
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
739 740 741 742 743 744
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
745
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
746 747 748
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
749
                                - The shape is (1 x 7D).
C
chengduo 已提交
750 751 752 753 754

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
755 756 757 758 759 760 761 762 763
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
764
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
765 766
                              default "tanh".
        proj_activation(str): The activation for projection output.
767
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
768 769
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
770 771
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
772 773

    Returns:
774 775 776 777
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
778 779

    Examples:
780

Y
Yibing Liu 已提交
781 782
        .. code-block:: python

783 784 785 786
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
787
            hidden_dim, proj_dim = 512, 256
788
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
789
                                     act=None, bias_attr=None)
790 791 792
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
793 794 795 796
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
797
    """
798

C
chengduo 已提交
799
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
800
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
801
    size = size // 4
Y
Yibing Liu 已提交
802 803 804 805 806 807 808 809 810 811
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
812 813 814 815 816 817
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
846 847 848 849 850 851 852 853 854
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
855
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
856

857
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
858
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
859

G
guosheng 已提交
860 861 862 863 864 865 866 867 868
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
869

G
guosheng 已提交
870
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
871

G
guosheng 已提交
872
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
873 874
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
875 876 877 878
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
879
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
880 881

    Args:
882 883
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
884
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
885
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
886 887
            is the hidden size.
        size(int): The dimension of the gru cell.
888
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
889 890
            hidden-hidden weight matrix. Note:

891
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
892
              :math:`D` is the hidden size.
893
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
894
              The first part are weights of the update gate and reset gate with
895
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
896
              candidate hidden state with shape :math:`(D \\times D)`.
897 898 899 900 901

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
902
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
903
            the bias in the update gate, reset gate and candidate calculations.
904 905 906
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
907 908
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
909
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
910 911 912
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
913
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
914
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
915 916 917 918
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
919 920

    Returns:
G
guosheng 已提交
921
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
922
            and sequence length is the same with the input.
923

G
guosheng 已提交
924
    Examples:
925

G
guosheng 已提交
926 927
        .. code-block:: python

928 929 930 931
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
932
            hidden_dim = 512
933
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
934
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
935 936 937 938 939 940 941 942 943
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
944
    batch_size = input.shape[0]
G
guosheng 已提交
945
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
946
    if h_0:
G
guosheng 已提交
947
        assert h_0.shape == (
Y
Yancey 已提交
948 949 950
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
951

X
Xin Pan 已提交
952 953 954 955
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
974 975 976
def gru_unit(input,
             hidden,
             size,
977 978
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
979
             activation='tanh',
980
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
981
    """
982
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
983

984 985
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
986

987
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
988

989
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
990

991
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
992 993

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
994 995 996
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
997 998
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

999 1000
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1001 1002 1003
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1004 1005 1006

    Args:
        input (Variable): The fc transformed input value of current step.
1007
        hidden (Variable): The hidden value of gru unit from previous step.
1008
        size (integer): The input dimension value.
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1023
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1024
            the bias in the update gate, reset gate and candidate calculations.
1025 1026 1027
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1028 1029
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1030 1031 1032 1033
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1034

1035 1036 1037 1038 1039 1040
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1041

1042
             # assuming we have x_t_data and prev_hidden of size=10
1043
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1044 1045
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1058
    size = size // 3
Y
Yu Yang 已提交
1059 1060

    # create weight
1061 1062
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1063

X
Xin Pan 已提交
1064 1065 1066
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1067
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1068
    # create bias
1069
    if helper.bias_attr:
Y
Yu Yang 已提交
1070 1071 1072
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1073
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1074 1075 1076

    helper.append_op(
        type='gru_unit',
1077
        inputs=inputs,
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1084 1085
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1086 1087 1088 1089 1090
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1091
@templatedoc()
1092
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1093 1094 1095 1096 1097 1098 1099
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1100
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1101 1102 1103 1104
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1105 1106 1107
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1108 1109

    """
Y
Yu Yang 已提交
1110 1111 1112 1113 1114 1115
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1116 1117 1118 1119 1120 1121 1122 1123
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1139 1140 1141 1142
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1143

W
wopeizl 已提交
1144 1145
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1146

W
wopeizl 已提交
1147
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1148

W
wopeizl 已提交
1149
        label(${label_type}): ${label_comment}
1150

W
wopeizl 已提交
1151 1152
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154 1155
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1156

W
wopeizl 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1167
                "Transition": transition,
W
wopeizl 已提交
1168 1169
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1170

W
wopeizl 已提交
1171
    return viterbi_path
Y
Yu Yang 已提交
1172 1173


Y
yi.wu 已提交
1174
@templatedoc()
F
fengjiayi 已提交
1175
def cos_sim(X, Y):
Y
Yu Yang 已提交
1176
    """
Y
yi.wu 已提交
1177 1178 1179
    ${comment}

    Args:
1180 1181
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1182

Y
yi.wu 已提交
1183
    Returns:
1184
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1185
    """
F
fengjiayi 已提交
1186
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1187 1188 1189
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1200 1201 1202 1203 1204
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1205
            dropout_implementation="downgrade_in_infer"):
1206 1207 1208 1209 1210
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1211
    training. The dropout operator randomly sets (according to the given dropout
1212 1213 1214 1215
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1216 1217
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1218 1219 1220 1221 1222 1223 1224
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1236
                                           dropout op can be removed from the program.
P
phlrain 已提交
1237
                                           the program will be efficient
1238

P
phlrain 已提交
1239

1240 1241

    Returns:
1242
        Variable: A tensor variable is the shape with `x`.
1243 1244

    Examples:
1245

1246 1247
        .. code-block:: python

1248 1249
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1250 1251
    """

F
fengjiayi 已提交
1252
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1253 1254 1255
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1256 1257 1258 1259

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1260 1261 1262 1263 1264
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1265 1266 1267 1268
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1269 1270
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1271
        })
1272 1273 1274
    return out


J
jerrywgz 已提交
1275
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1276
    """
Y
Yibing Liu 已提交
1277 1278
    **Cross Entropy Layer**

1279 1280 1281
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1282 1283

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1284
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1285

Y
Yibing Liu 已提交
1286
        .. math::
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288 1289 1290
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1291 1292
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1293 1294 1295 1296 1297

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1298
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1299 1300 1301
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1302 1303
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1304
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1305

Y
Yibing Liu 已提交
1306
    Args:
Y
yangyaming 已提交
1307
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1308 1309 1310 1311
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1312
        label (Variable|list): the ground truth which is a 2-D tensor. When
1313 1314 1315 1316
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1317
        soft_label (bool): a flag indicating whether to
1318
                                           interpretate the given labels as soft
1319
                                           labels. Default: `False`.
M
minqiyang 已提交
1320 1321
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1322
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1323 1324 1325 1326 1327

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1328 1329 1330 1331 1332
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1333 1334 1335 1336 1337 1338

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1339
    """
F
fengjiayi 已提交
1340
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1341
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1342 1343 1344 1345 1346
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1347 1348
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1349 1350 1351
    return out


1352
def bpr_loss(input, label):
F
frankwhzhang 已提交
1353 1354 1355
    """
    Bayesian Personalized Ranking Loss Operator.

1356
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1357 1358 1359 1360 1361 1362
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1363 1364 1365 1366 1367 1368 1369 1370 1371
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1372 1373 1374
    Examples:
        .. code-block:: python

1375
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1376
    """
1377 1378 1379 1380 1381 1382

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1383
                'Label': [label]},
1384 1385 1386 1387
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1388
def square_error_cost(input, label):
Y
Yu Yang 已提交
1389
    """
1390 1391
    **Square error cost layer**

1392 1393
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1408 1409
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1410 1411

    Returns:
G
guosheng 已提交
1412
        Variable: The tensor variable storing the element-wise squared error \
1413
                  difference of input and label.
1414 1415 1416 1417 1418 1419 1420 1421

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1422
    """
F
fengjiayi 已提交
1423
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1424
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1425 1426 1427 1428 1429 1430
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1431
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1432
    helper.append_op(
F
fengjiayi 已提交
1433 1434
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1435 1436 1437
    return square_out


Y
yi.wu 已提交
1438
@templatedoc()
Y
Yu Yang 已提交
1439 1440 1441 1442
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1443
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1444
    """
Y
yi.wu 已提交
1445
    **Chunk Evaluator**
Y
yi.wu 已提交
1446

Y
yangyaming 已提交
1447
    This function computes and outputs the precision, recall and
1448
    F1-score of chunk detection.
Y
yi.wu 已提交
1449

Y
yi.wu 已提交
1450 1451 1452 1453 1454 1455 1456 1457
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1458

Y
yi.wu 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1484

Y
yi.wu 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1509
    Args:
1510 1511 1512 1513 1514
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1515

Y
yi.wu 已提交
1516
    Returns:
Y
update  
yi.wu 已提交
1517 1518 1519
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1520

Y
yi.wu 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1533
    """
F
fengjiayi 已提交
1534
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1535 1536

    # prepare output
X
Xin Pan 已提交
1537 1538 1539 1540 1541 1542 1543
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1544 1545 1546 1547 1548 1549 1550 1551

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1552 1553 1554 1555
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1556 1557 1558
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1559 1560
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1561
        })
1562 1563
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1564 1565


1566
@templatedoc()
Y
Yu Yang 已提交
1567 1568 1569 1570 1571 1572 1573
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1574 1575
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1576 1577 1578 1579
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1580 1581 1582 1583 1584 1585 1586

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1600

1601 1602
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1603 1604 1605 1606 1607 1608 1609
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1610
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1621
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1622 1623 1624 1625 1626 1627
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1628
def sequence_softmax(input, use_cudnn=False, name=None):
1629 1630 1631
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1632
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1649 1650 1651
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1664 1665
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1666
    softmax_out = helper.create_variable_for_type_inference(dtype)
1667 1668 1669 1670 1671 1672 1673 1674
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1675
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1676
    """
1677
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1678
    has the same shape as the input.
Q
qiaolongfei 已提交
1679

1680 1681 1682 1683 1684 1685
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1686
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1687 1688 1689 1690 1691 1692 1693

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1694
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1695 1696 1697 1698 1699 1700 1701 1702

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1703 1704 1705
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1718 1719
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1720
    softmax_out = helper.create_variable_for_type_inference(dtype)
1721 1722 1723 1724 1725 1726 1727 1728
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1729 1730 1731
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1732 1733
           stride=1,
           padding=0,
1734
           dilation=1,
Y
Yu Yang 已提交
1735 1736 1737
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1738
           use_cudnn=True,
1739 1740
           act=None,
           name=None):
Y
Yu Yang 已提交
1741
    """
C
chengduoZH 已提交
1742
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1743 1744
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1745
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1746 1747 1748 1749 1750 1751 1752
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1753 1754 1755
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1756

1757
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1758

C
chengduoZH 已提交
1759 1760
    .. math::

C
refine  
chengduoZH 已提交
1761
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1762

T
tensor-tang 已提交
1763
    Where:
C
chengduoZH 已提交
1764

1765 1766 1767 1768 1769
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1770
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1771 1772 1773

    Example:

1774 1775
        - Input:

W
weixing02 已提交
1776
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1777

W
weixing02 已提交
1778
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1779

1780
        - Output:
T
tensor-tang 已提交
1781

W
weixing02 已提交
1782
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1783

C
chengduoZH 已提交
1784
        Where
1785 1786

        .. math::
C
chengduoZH 已提交
1787

W
weixing02 已提交
1788 1789
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1790 1791

    Args:
1792
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1793
        num_filters(int): The number of filter. It is as same as the output
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1822 1823
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1824 1825
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1826
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1827
            will be named automatically. Default: None
C
chengduoZH 已提交
1828 1829

    Returns:
G
guosheng 已提交
1830
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1831 1832
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1833
    Raises:
1834 1835
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1836

C
chengduoZH 已提交
1837 1838 1839
    Examples:
        .. code-block:: python

1840 1841
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1842 1843 1844
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1845
    assert param_attr is not False, "param_attr should not be False here."
1846
    l_type = 'conv2d'
X
xzl 已提交
1847 1848
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1849
        l_type = 'depthwise_conv2d'
1850 1851 1852 1853

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1854 1855 1856 1857 1858
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1859
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1860

C
chengduoZH 已提交
1861 1862 1863
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1864
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1865

C
chengduoZH 已提交
1866 1867
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1868 1869

    input_shape = input.shape
M
minqiyang 已提交
1870
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1871 1872

    def _get_default_param_initializer():
C
chengduo 已提交
1873 1874
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880 1881 1882
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1883
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1899
    helper.append_op(
1900
        type=l_type,
Y
Yu Yang 已提交
1901 1902 1903 1904 1905
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1906 1907 1908
        attrs={
            'strides': stride,
            'paddings': padding,
1909
            'dilations': dilation,
C
chengduoZH 已提交
1910
            'groups': groups,
1911
            'use_cudnn': use_cudnn,
1912
            'use_mkldnn': False,
C
chengduoZH 已提交
1913
        })
Y
Yu Yang 已提交
1914 1915 1916 1917 1918 1919

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1937 1938 1939 1940 1941 1942
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1952 1953
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1954 1955 1956
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1957
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1983
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1984 1985
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1986
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1987 1988
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1989
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1990 1991
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1992
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1993 1994 1995 1996 1997 1998
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2009 2010
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2011 2012
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2013
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2014
            will be named automatically. Default: None.
C
chengduoZH 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2027 2028
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2029 2030 2031
    """

    l_type = 'conv3d'
C
chengduo 已提交
2032
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2043
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2057 2058 2059
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2060 2061 2062 2063 2064 2065 2066 2067
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2068
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2083
            'use_mkldnn': False
C
chengduoZH 已提交
2084 2085
        })

2086
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2087 2088 2089 2090

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2091
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2092
    """
Y
yangyaming 已提交
2093 2094 2095
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2107
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2108 2109 2110 2111 2112
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2113
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2114 2115 2116 2117 2118 2119 2120

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2121 2122
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2123

L
Luo Tao 已提交
2124 2125
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2126
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2127
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2128
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2129 2130 2131 2132 2133 2134 2135

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2136

Y
yangyaming 已提交
2137
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2138 2139 2140 2141 2142
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2143 2144
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2145
    """
F
fengjiayi 已提交
2146
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2147
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2148 2149
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2150 2151 2152 2153 2154 2155

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2156 2157
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2158

Y
yangyaming 已提交
2159 2160 2161 2162 2163
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2164 2165 2166
    return pool_out


C
add doc  
chengduoZH 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2186
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2187 2188 2189 2190 2191
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2192
def sequence_first_step(input):
L
Luo Tao 已提交
2193
    """
L
Luo Tao 已提交
2194
    This function gets the first step of sequence.
L
Luo Tao 已提交
2195 2196 2197 2198

    .. code-block:: text

       x is a 1-level LoDTensor:
2199
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2200 2201 2202 2203 2204
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2205
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2206
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2207

L
Luo Tao 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2217

Y
yangyaming 已提交
2218
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2219 2220 2221
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2222 2223 2224
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2225
def sequence_last_step(input):
L
Luo Tao 已提交
2226
    """
L
Luo Tao 已提交
2227
    This function gets the last step of sequence.
L
Luo Tao 已提交
2228 2229 2230 2231

    .. code-block:: text

       x is a 1-level LoDTensor:
2232
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2233 2234 2235 2236 2237
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2238
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2239
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2240

L
Luo Tao 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2250

Y
yangyaming 已提交
2251
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2252 2253 2254
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2255 2256 2257
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2258 2259 2260 2261
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2262
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2263 2264 2265 2266 2267
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2268

Y
Yibing Liu 已提交
2269 2270
	- Case:

2271
            Given the input Variable **input**:
2272

2273 2274 2275
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2276

2277
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2278

2279
            the output Variable will be
2280

2281 2282 2283
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2284 2285

    NOTE: The first dimension size of **input**, **offset** and **length**
2286
          should be equal. The **offset** should start from 0.
2287

Y
Yibing Liu 已提交
2288
    Args:
2289
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2290
                         sequences.
Y
Yibing Liu 已提交
2291 2292 2293 2294 2295 2296
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2297
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2308
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2309 2310 2311 2312
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2313
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2328
@templatedoc()
Y
Yu Yang 已提交
2329
def pool2d(input,
C
chengduoZH 已提交
2330 2331
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2332 2333
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2334
           global_pooling=False,
C
chengduoZH 已提交
2335
           use_cudnn=True,
2336
           ceil_mode=False,
2337 2338
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2339
    """
F
fengjiayi 已提交
2340
    ${comment}
2341 2342

    Args:
2343 2344 2345
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2346
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2347
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2348 2349
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2350
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2351 2352 2353 2354 2355 2356
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2357 2358 2359
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2360
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2361
                        layer will be named automatically.
2362
        exclusive (bool): Whether to exclude padding points in average pooling
2363
                          mode, default is true
F
fengjiayi 已提交
2364

2365
    Returns:
F
fengjiayi 已提交
2366
        Variable: The pooling result.
F
fengjiayi 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2380 2381 2382 2383
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2384
                            global_pooling=False)
Y
Yu Yang 已提交
2385 2386 2387 2388 2389
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2390

C
chengduoZH 已提交
2391 2392 2393 2394 2395
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2396 2397 2398 2399
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2400 2401
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2402

C
Add doc  
chengduoZH 已提交
2403
    l_type = 'pool2d'
2404 2405

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2406
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2407
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2408 2409

    helper.append_op(
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2421 2422
            "use_mkldnn": False,
            "exclusive": exclusive,
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2436 2437
           name=None,
           exclusive=True):
2438 2439
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2440
    pooling configurations mentioned in input parameters.
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2453
        exclusive (bool): Whether to exclude padding points in average pooling
2454
                          mode, default is true
2455

2456
    Returns:
2457
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2458 2459 2460 2461 2462
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2463

C
chengduoZH 已提交
2464 2465 2466 2467 2468
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2469 2470 2471
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2472

C
chengduoZH 已提交
2473 2474
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2475

2476 2477
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2478
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2479
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2480 2481

    helper.append_op(
2482
        type=l_type,
Y
Yu Yang 已提交
2483 2484 2485 2486 2487 2488 2489
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2490
            "paddings": pool_padding,
2491
            "use_cudnn": use_cudnn,
2492
            "ceil_mode": ceil_mode,
2493 2494
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2507
               data_layout='NCHW',
Y
Yang Yang 已提交
2508
               in_place=False,
2509 2510
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2511
               moving_variance_name=None,
2512
               do_model_average_for_mean_and_var=False,
2513 2514
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2515
    """
Q
qiaolongfei 已提交
2516 2517 2518 2519
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2520

Q
qiaolongfei 已提交
2521
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2522

Q
qiaolongfei 已提交
2523 2524
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2525 2526 2527
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2540

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2554
    Args:
Q
qiaolongfei 已提交
2555
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2556 2557 2558 2559
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2560 2561 2562 2563 2564 2565 2566 2567
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2568
        data_layout(string, default NCHW): NCHW|NHWC
2569
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2570 2571 2572 2573
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2574
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2575
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2576 2577 2578 2579 2580
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2581 2582

    Returns:
Q
qiaolongfei 已提交
2583
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2584 2585 2586 2587 2588 2589 2590

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2591
    """
C
chengduo 已提交
2592
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2613 2614 2615
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2616 2617

    bias = helper.create_parameter(
2618
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2619 2620 2621
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2622

2623 2624
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2625 2626 2627
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2628
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2629
        shape=param_shape,
2630 2631 2632 2633 2634 2635 2636
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2637
            trainable=False,
W
wanghaoshuang 已提交
2638
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2639
        shape=param_shape,
2640 2641
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2642 2643 2644 2645 2646 2647

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2648 2649 2650 2651
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2652

X
Xin Pan 已提交
2653 2654
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2672 2673 2674 2675
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2676
            "use_mkldnn": False,
2677 2678
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2679
        })
Y
Yu Yang 已提交
2680 2681 2682 2683

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2684
@templatedoc()
G
guosheng 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2695
    ${comment}
G
guosheng 已提交
2696 2697 2698

    The formula is as follows:

Y
yuyang18 已提交
2699
    ..  math::
G
guosheng 已提交
2700 2701 2702 2703 2704 2705 2706

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2707 2708 2709 2710 2711 2712 2713 2714
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2715

G
guosheng 已提交
2716 2717
    Args:
        input(Variable): The input tensor variable.
2718
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2719
            normalization. Default True.
2720
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2721 2722
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2723
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2724
            Default 1.
2725
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2726
            division by zero. Default 1e-05.
G
guosheng 已提交
2727
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2728 2729
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2730 2731
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2732
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2733 2734
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2735
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2736
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2737
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2738 2739 2740
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2741 2742

    Returns:
Y
yuyang18 已提交
2743
        ${y_comment}
G
guosheng 已提交
2744 2745 2746

    Examples:

Y
yuyang18 已提交
2747 2748 2749
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2765
    if shift:
G
guosheng 已提交
2766 2767 2768 2769 2770 2771
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2772 2773 2774 2775 2776
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2870 2871 2872 2873
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2874 2875 2876
                     padding=0,
                     stride=1,
                     dilation=1,
2877
                     groups=None,
C
caoying03 已提交
2878
                     param_attr=None,
2879
                     bias_attr=None,
C
chengduoZH 已提交
2880
                     use_cudnn=True,
2881
                     act=None,
C
caoying03 已提交
2882
                     name=None):
Y
Yu Yang 已提交
2883
    """
2884 2885 2886 2887 2888 2889 2890 2891
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2892 2893
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2894 2895 2896
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2897 2898 2899 2900 2901

    For each input :math:`X`, the equation is:

    .. math::

2902
        Out = \sigma (W \\ast X + b)
2903

2904
    Where:
2905 2906 2907

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2908 2909 2910 2911
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2912

2913 2914 2915 2916
    Example:

        - Input:

2917
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2918

2919
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2920 2921 2922

        - Output:

2923
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2924 2925

        Where
Y
Yu Yang 已提交
2926

2927 2928
        .. math::

2929 2930 2931 2932
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2933 2934

    Args:
2935 2936 2937 2938
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2939 2940 2941 2942
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2971
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2972 2973 2974
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2975
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2976
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2977 2978

    Returns:
2979
        Variable: The tensor variable storing the convolution transpose result.
2980 2981

    Raises:
2982 2983
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2984 2985 2986 2987

    Examples:
       .. code-block:: python

2988 2989
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2990
    """
C
chengduo 已提交
2991
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2992 2993 2994 2995 2996 2997 2998 2999
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3000 3001 3002
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3003 3004 3005
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3006

C
chengduoZH 已提交
3007 3008
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3009

Y
Yu Yang 已提交
3010 3011 3012 3013 3014
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3015

Y
Yu Yang 已提交
3016 3017
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3018

C
chengduoZH 已提交
3019
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3020
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3021
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3022
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3023
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3024 3025 3026
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3027

3028 3029 3030 3031 3032 3033 3034
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3035
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3036
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3037

Y
Yu Yang 已提交
3038 3039 3040
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3041
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3042
    helper.append_op(
3043
        type=op_type,
Y
Yu Yang 已提交
3044 3045
        inputs={'Input': [input],
                'Filter': [img_filter]},
3046
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3047
        attrs={
3048
            'output_size': output_size,
3049 3050 3051 3052 3053
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3054 3055
        })

3056 3057 3058
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3059 3060


3061
def conv3d_transpose(input,
Y
Yu Yang 已提交
3062 3063 3064
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3065 3066 3067
                     padding=0,
                     stride=1,
                     dilation=1,
3068
                     groups=None,
C
caoying03 已提交
3069
                     param_attr=None,
3070
                     bias_attr=None,
C
chengduoZH 已提交
3071
                     use_cudnn=True,
3072
                     act=None,
C
caoying03 已提交
3073
                     name=None):
Y
Yu Yang 已提交
3074
    """
3075
    **Convlution3D transpose layer**
3076

3077
    The convolution3D transpose layer calculates the output based on the input,
3078
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3079 3080 3081 3082 3083 3084
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3085 3086 3087
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3088 3089 3090 3091 3092

    For each input :math:`X`, the equation is:

    .. math::

3093
        Out = \sigma (W \\ast X + b)
3094 3095 3096

    In the above equation:

3097 3098
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3099 3100 3101 3102
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3103

3104 3105 3106 3107
    Example:

        - Input:

3108
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3109

3110
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3111 3112 3113

        - Output:

3114
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3115 3116

        Where
Y
Yu Yang 已提交
3117

3118 3119
        .. math::

3120 3121 3122
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3123 3124

    Args:
3125
        input(Variable): The input image with [N, C, D, H, W] format.
3126 3127 3128
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3129
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3130 3131
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3132
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3133 3134 3135
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3136 3137
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3138
        stride(int|tuple): The stride size. If stride is a tuple, it must
3139 3140
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3141
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3142 3143 3144
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3145 3146 3147 3148 3149
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3159 3160
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3161 3162
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3163 3164
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3165 3166

    Returns:
3167
        Variable: The tensor variable storing the convolution transpose result.
3168 3169

    Raises:
3170 3171
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3172 3173 3174 3175

    Examples:
       .. code-block:: python

3176 3177
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3178
    """
C
chengduo 已提交
3179
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3180 3181
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3182
    if not isinstance(input, Variable):
3183
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3184 3185
    input_channel = input.shape[1]

3186 3187 3188
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3189

C
chengduoZH 已提交
3190 3191 3192
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3193 3194 3195 3196 3197 3198
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3199 3200 3201
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3202

3203
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3204
                         padding[0] - 1) // dilation[0] + 1
3205
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3206
                         padding[1] - 1) // dilation[1] + 1
3207
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3208
                         padding[2] - 1) // dilation[2] + 1
3209
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3210
    else:
3211 3212
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3213

3214
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3215
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3216 3217 3218
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3219
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3220
    helper.append_op(
3221
        type=l_type,
Y
Yu Yang 已提交
3222 3223
        inputs={'Input': [input],
                'Filter': [img_filter]},
3224
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3225 3226 3227 3228
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3229
            'groups': groups,
C
chengduoZH 已提交
3230 3231
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3232

3233 3234
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3235
    return out
Y
yangyaming 已提交
3236 3237


Y
yangyaming 已提交
3238
def sequence_expand(x, y, ref_level=-1, name=None):
3239
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3240 3241 3242 3243
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3244 3245 3246 3247 3248

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3249
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3250
                x.data = [[a], [b], [c], [d]]
3251 3252 3253
                x.dims = [4, 1]

            y is a LoDTensor:
3254 3255
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3256

Y
yangyaming 已提交
3257
            ref_level: 0
3258

Y
yangyaming 已提交
3259
            then output is a 1-level LoDTensor:
3260
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3261
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3262 3263 3264 3265
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3266
                x.data = [[a], [b], [c]]
3267 3268 3269
                x.dims = [3, 1]

            y is a LoDTensor:
3270
                y.lod = [[2, 0, 3]]
3271

Y
yangyaming 已提交
3272
            ref_level: -1
3273

Y
yangyaming 已提交
3274 3275 3276
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3277 3278 3279
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3280 3281
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3282
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3283
                        will be named automatically.
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3294
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3295
    """
Y
yangyaming 已提交
3296
    helper = LayerHelper('sequence_expand', input=x, **locals())
3297
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3298
    tmp = helper.create_variable_for_type_inference(dtype)
3299
    helper.append_op(
Y
yangyaming 已提交
3300 3301 3302 3303 3304
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3305
    return tmp
3306 3307


C
chengduo 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3364
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3365 3366 3367 3368 3369 3370 3371 3372
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3373
@templatedoc()
3374
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3375 3376 3377 3378 3379
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3380 3381 3382
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3383
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3384 3385 3386 3387
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3388 3389 3390
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3391

F
fengjiayi 已提交
3392
    Returns:
M
minqiyang 已提交
3393
        Variable: The padded sequence batch and the original lengths before
3394
                  padding. All sequences has the same length.
M
minqiyang 已提交
3395

F
fengjiayi 已提交
3396 3397 3398 3399 3400 3401 3402
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3403
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3404
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3405 3406 3407 3408 3409
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3410 3411
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3412 3413 3414 3415

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3416 3417 3418 3419 3420 3421
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3422 3423
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3424
        attrs={'padded_length': maxlen})
3425
    return out, length
F
fengjiayi 已提交
3426 3427


3428
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3429
    """
3430
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3431

3432 3433
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3443 3444 3445
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3446
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3447 3448 3449 3450 3451 3452

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3453
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3454 3455 3456 3457 3458 3459

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3460 3461
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3476
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3488 3489 3490 3491 3492 3493 3494 3495 3496
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3497 3498
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3499 3500 3501

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3502 3503

    This layer does the search in beams for one time step. Specifically, it
3504 3505 3506 3507 3508 3509
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3510

3511 3512 3513 3514 3515 3516 3517 3518
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3519

3520
    Args:
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3546

3547
    Returns:
3548 3549
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3550 3551 3552 3553

    Examples:
        .. code-block:: python

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3571 3572 3573 3574
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3575 3576 3577
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3578 3579 3580 3581 3582

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3583
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3601 3602 3603 3604 3605 3606 3607
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3618

3619 3620 3621 3622 3623 3624
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3625

3626 3627
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3628

3629 3630 3631 3632 3633 3634
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3635 3636
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3652 3653 3654 3655
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3656
              param_attr=None,
C
caoying03 已提交
3657 3658
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3659 3660 3661 3662
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3663
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3664

3665
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3666

3667
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3668

3669
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3670 3671 3672

            h_t & = o_t tanh(c_t)

3673 3674 3675 3676 3677 3678
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3679 3680 3681

        .. math::

3682
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3683 3684 3685 3686 3687 3688 3689 3690

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3691
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3692 3693

    Args:
Y
yangyaming 已提交
3694 3695 3696 3697 3698 3699
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3700
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3713 3714
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3715 3716

    Returns:
Y
yangyaming 已提交
3717
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3718 3719

    Raises:
3720 3721 3722 3723
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3724 3725 3726 3727 3728 3729

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3730
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3731
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3732
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3749
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3750 3751 3752 3753
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3754 3755
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3756 3757 3758
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3759
    size = cell_t_prev.shape[1]
3760
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3761 3762
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3763
                param_attr=param_attr,
3764
                bias_attr=bias_attr)
Y
yangyaming 已提交
3765
    dtype = x_t.dtype
X
Xin Pan 已提交
3766 3767
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3777
    return h, c
G
guosheng 已提交
3778 3779


C
caoying03 已提交
3780
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3781
    """
Y
yangyaming 已提交
3782
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3783 3784 3785

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3786
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3787 3788
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3789 3790
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3791
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3792
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3793
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3794 3795
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3796 3797 3798

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3799

G
guosheng 已提交
3800 3801 3802 3803 3804 3805
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3806
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3807 3808 3809 3810
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3811 3812 3813 3814

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3815
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3816 3817 3818
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3819 3820
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3821
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3822 3823
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3824 3825 3826 3827 3828
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3829
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3830 3831 3832 3833
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3834 3835


C
caoying03 已提交
3836
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3837
    """
Y
Yibing Liu 已提交
3838
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3839 3840 3841

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3842 3843 3844
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3845
            must be in the range :math:`[-rank(input), rank(input))`. If
3846
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3847
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3848 3849
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3850
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3851
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3852
                       will be named automatically.
G
guosheng 已提交
3853 3854

    Returns:
Y
Yibing Liu 已提交
3855
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3856

G
guosheng 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3867 3868
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3869 3870 3871 3872 3873 3874 3875

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3876 3877
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3878
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3879 3880
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3881 3882 3883 3884 3885
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3886
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3887 3888 3889 3890
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3891 3892


C
caoying03 已提交
3893
def reduce_max(input, dim=None, keep_dim=False, name=None):
3894
    """
Y
yangyaming 已提交
3895
    Computes the maximum of tensor elements over the given dimension.
3896 3897 3898

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3899
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3900 3901 3902
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3903
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3904 3905
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3906
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3907 3908
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3909 3910 3911

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3912

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3924 3925 3926 3927 3928 3929 3930

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3931 3932
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3933
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3934 3935
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3936 3937 3938 3939 3940
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3941
            'dim': dim if dim != None else [0],
3942 3943 3944 3945 3946 3947
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3948
def reduce_min(input, dim=None, keep_dim=False, name=None):
3949
    """
Y
yangyaming 已提交
3950
    Computes the minimum of tensor elements over the given dimension.
3951 3952 3953

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3954
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3955 3956 3957
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3958
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3959 3960
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3961
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3962 3963
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3964 3965 3966

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3979 3980 3981 3982 3983 3984 3985

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3986 3987
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3988
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3989 3990
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3991 3992 3993 3994 3995
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3996
            'dim': dim if dim != None else [0],
3997 3998 3999 4000
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4001 4002


4003 4004 4005 4006 4007 4008
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4009
        dim (list|int|None): The dimensions along which the product is performed. If
4010 4011
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4012 4013
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4014 4015 4016
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4017
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4018
            layer will be named automatically.
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4033
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4034
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4035 4036 4037 4038 4039 4040 4041

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4042 4043
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4044
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4045 4046
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4047 4048 4049 4050 4051
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4052
            'dim': dim if dim != None else [0],
4053 4054 4055 4056 4057 4058
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4059
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4060
    """
C
caoying03 已提交
4061
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4062 4063 4064

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4065 4066 4067 4068 4069
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4070
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4071
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4072
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4073 4074
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4075 4076

    Returns:
D
dzhwinter 已提交
4077
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4087 4088
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4104
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4127
    .. math::
4128 4129

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4130 4131 4132 4133 4134

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4135
        x(Variable|list): The input tensor to l2_normalize layer.
4136
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4137 4138
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4139
        epsilon(float): The epsilon value is used to avoid division by zero, \
4140
            the defalut value is 1e-10.
4141
        name(str|None): A name for this layer(optional). If set None, the layer \
4142
            will be named automatically.
C
caoying03 已提交
4143 4144

    Returns:
4145
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4146 4147

    Examples:
4148

C
caoying03 已提交
4149 4150
        .. code-block:: python

4151 4152 4153 4154
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4155 4156
    """

F
fengjiayi 已提交
4157 4158
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4159 4160
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4161 4162
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4163
    helper.append_op(
4164 4165 4166 4167
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4168
        attrs={
4169 4170
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4171 4172
        })
    return out
4173 4174


S
sneaxiy 已提交
4175
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4176
    """
Y
ying 已提交
4177 4178 4179 4180
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4181

C
chengduoZH 已提交
4182
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4183
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4184

4185 4186 4187 4188 4189
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4190
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4191

C
chengduoZH 已提交
4192
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4193
      performs in the following way.
G
guosheng 已提交
4194

4195
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4196
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4197
        last two dimensions and a batched matrix multiply supporting broadcast
4198
        applies on the two tensors.
G
guosheng 已提交
4199

Y
ying 已提交
4200 4201
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4202
    removed after matrix multiplication.
G
guosheng 已提交
4203 4204 4205

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4206 4207 4208
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4209
        alpha (float): The scale of output. Default 1.0.
4210
        name(str|None): A name for this layer(optional). If set None, the layer
4211
            will be named automatically.
G
guosheng 已提交
4212 4213

    Returns:
4214
        Variable: The product Tensor variable.
G
guosheng 已提交
4215

G
guosheng 已提交
4216 4217 4218
    Examples:
        .. code-block:: python

4219
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4220 4221
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4222

4223 4224
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4225

4226 4227
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4228

4229 4230
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4231 4232 4233 4234

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4235 4236
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4237

Y
ying 已提交
4238
            # x: [M], y: [N]
4239
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4240
    """
Y
ying 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4253
            y_shape = y_shape + [1]
Y
ying 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4270
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4272
    helper.append_op(
4273 4274 4275 4276
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4277 4278 4279
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4280
            'alpha': float(alpha),
S
sneaxiy 已提交
4281
        })
4282
    return out
4283 4284


4285
def topk(input, k, name=None):
Q
qingqing01 已提交
4286 4287 4288 4289
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4290
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4291 4292 4293 4294 4295 4296
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4318 4319 4320
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4321
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4322
                 of input.
4323
        name(str|None): A name for this layer(optional). If set None, the layer
4324
                       will be named automatically.
F
fengjiayi 已提交
4325
                       Default: None
Q
qingqing01 已提交
4326 4327

    Returns:
4328 4329 4330
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4331
        within the last dimension of input.
Q
qingqing01 已提交
4332

F
fengjiayi 已提交
4333 4334
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4335 4336 4337 4338 4339 4340 4341

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4342 4343
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4355
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4356
    """
Y
ying 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4366

Y
ying 已提交
4367
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4368

4369
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4370 4371
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4372
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4373

4374
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4375 4376
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4377

4378 4379 4380
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4381
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4382
                          the length of reference string.
4383
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4384
                                     calculating edit distance.
4385
        name (str): The name of this layer. It is optional.
4386

W
wanghaoshuang 已提交
4387
    Returns:
W
wanghaoshuang 已提交
4388
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4389 4390 4391 4392

    Examples:
        .. code-block:: python

T
tink2123 已提交
4393 4394
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4395
            cost = fluid.layers.edit_distance(input=x,label=y)
4396
    """
4397
    helper = LayerHelper("edit_distance", **locals())
4398

4399
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4400
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4401 4402
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4403 4404 4405 4406 4407

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4408
            attrs={"tokens": ignored_tokens})
4409 4410 4411 4412 4413
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4414
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4415
            attrs={"tokens": ignored_tokens})
4416 4417
        label = erased_label

4418
    # edit distance op
X
Xin Pan 已提交
4419 4420
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4421 4422 4423 4424
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4425 4426
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4427 4428
        attrs={"normalized": normalized})

4429
    return edit_distance_out, sequence_num
4430 4431 4432 4433 4434


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4435

Y
ying 已提交
4436 4437 4438 4439
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4457
        input.lod = [[4, 4]]
W
whs 已提交
4458 4459
      
        Computation:
4460

W
whs 已提交
4461 4462 4463 4464 4465 4466
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4467 4468 4469 4470 4471

        output.data = [[2],
                       [1],
                       [3]]

4472
        output.lod = [[2, 1]]
4473

W
whs 已提交
4474

4475 4476
    Args:

Y
ying 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4486
        name (str): The name of this layer. It is optional.
4487 4488

    Returns:
W
whs 已提交
4489 4490 4491 4492
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4493 4494 4495 4496 4497

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4498

4499
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4500
    """
4501
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4502
    _, topk_indices = topk(input, k=1)
4503 4504

    # ctc align op
X
Xin Pan 已提交
4505
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4506 4507 4508
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4509
        outputs={"Output": [ctc_out]},
4510 4511
        attrs={"merge_repeated": True,
               "blank": blank})
4512
    return ctc_out
4513 4514


W
Wu Yi 已提交
4515
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4516
    """
4517 4518
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4519
    to compute Connectionist Temporal Classification (CTC) loss.
4520 4521
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4522 4523 4524
    input tensor.

    Args:
4525
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4526 4527 4528 4529
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4530
       label (Variable): The ground truth of variable-length sequence,
4531 4532 4533
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4534 4535
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4536 4537 4538
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4539
         follewed by a mean_op.
W
Wu Yi 已提交
4540
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4541 4542

    Returns:
4543 4544
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4545 4546

    Examples:
4547

W
wanghaoshuang 已提交
4548
        .. code-block:: python
4549

4550 4551 4552
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4553 4554

    """
F
fengjiayi 已提交
4555
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4556 4557
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4558 4559 4560 4561 4562 4563
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4564 4565 4566 4567 4568
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4569
    return loss_out
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4585 4586 4587
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4588 4589 4590 4591 4592
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4593

4594
            out.lod  = [[0, 1, 3]]
4595 4596 4597 4598

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4599 4600 4601 4602 4603 4604 4605
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4606 4607 4608

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4609 4610

    Returns:
4611

4612 4613 4614 4615 4616
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4617
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4618
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4619 4620
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4621
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4622 4623 4624 4625 4626 4627
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4628 4629


4630 4631 4632 4633
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4634 4635 4636 4637 4638 4639
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4640
        num_neg_samples=None,
4641 4642 4643
        name=None,
        sampler="uniform",
        custom_dist=None,
4644 4645
        seed=0,
        is_sparse=False):
4646 4647 4648 4649 4650 4651 4652
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4653 4654
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4655
            sample is 1.0.
C
chengduo 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4665
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4666 4667
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4668 4669 4670
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4671
        custom_dist (float[]): A float[] with size=num_total_classes.
4672 4673 4674 4675
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4676
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4677

4678
    Returns:
Y
Yibing Liu 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4706 4707 4708 4709 4710 4711 4712 4713 4714

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4715

4716
    """
Y
Yang Yu 已提交
4717 4718 4719
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4720 4721

    dim = input.shape[1]
Y
Yang Yu 已提交
4722 4723 4724 4725 4726 4727
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4728
    inputs = {}
C
chengduo 已提交
4729 4730 4731 4732 4733 4734 4735
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4736 4737 4738
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4739

4740 4741 4742 4743
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4744 4745 4746 4747 4748 4749 4750

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4803 4804 4805 4806
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4807 4808 4809 4810 4811
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4812 4813
    attrs = {
        'num_total_classes': int(num_total_classes),
4814 4815
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4816 4817
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4818
    }
Y
Yang Yu 已提交
4819 4820 4821

    helper.append_op(
        type='nce',
C
chengduo 已提交
4822
        inputs=inputs,
Y
Yang Yu 已提交
4823 4824 4825 4826 4827 4828
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4829
    return cost / (num_neg_samples + 1)
4830 4831


C
chengduo 已提交
4832 4833
def hsigmoid(input,
             label,
4834
             num_classes,
C
chengduo 已提交
4835 4836
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4837
             name=None,
4838 4839 4840
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4841
             is_sparse=False):
W
weixing02 已提交
4842 4843
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4844
    process of language model. This operator organizes the classes into a
4845 4846
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4847 4848 4849 4850 4851 4852
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4853
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4854
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4855

4856 4857 4858 4859 4860 4861 4862 4863 4864
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4865
    Args:
M
minqiyang 已提交
4866
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4867 4868 4869 4870
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4871 4872 4873
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4885 4886 4887 4888 4889 4890 4891
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4892
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4893 4894
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4895 4896

    Returns:
J
JiabinYang 已提交
4897
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4898 4899 4900 4901 4902

    Examples:

        .. code-block:: python

G
guosheng 已提交
4903 4904 4905
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4906 4907 4908 4909
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4910 4911
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4912
    dim = input.shape[1]
4913
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4914 4915 4916
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4917 4918 4919 4920
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4921 4922
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4923 4924 4925
    else:
        pass

J
JiabinYang 已提交
4926 4927
    weights = None

4928
    if not is_custom:
J
JiabinYang 已提交
4929 4930 4931 4932 4933 4934 4935 4936
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4937
            shape=[num_classes, dim],
J
JiabinYang 已提交
4938 4939
            is_bias=False,
            dtype=input.dtype)
4940 4941 4942
    inputs = {
        "X": input,
        "W": weights,
4943 4944
        "PTable": path_table,
        "PathCode": path_code,
4945 4946
        "Label": label
    }
W
weixing02 已提交
4947
    if helper.bias_attr:
4948
        if not is_custom:
J
JiabinYang 已提交
4949 4950
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4951
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4952 4953 4954 4955 4956 4957
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4958
                shape=[num_classes, 1],
J
JiabinYang 已提交
4959 4960 4961
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4962 4963
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4964
        inputs=inputs,
W
weixing02 已提交
4965 4966
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4967 4968
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4969 4970 4971
    return out


Y
fix ci.  
ying 已提交
4972
def transpose(x, perm, name=None):
Y
ying 已提交
4973 4974 4975 4976 4977 4978 4979
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4980 4981 4982
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4983 4984 4985 4986 4987 4988 4989

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4990
            # use append_batch_size=False to avoid prepending extra
4991
            # batch size in shape
4992
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4993
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4994
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4995 4996
    """

Y
fix ci.  
ying 已提交
4997
    if len(perm) != len(x.shape):
Y
ying 已提交
4998 4999 5000
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5001 5002 5003 5004 5005 5006
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5007 5008

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5009 5010
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5011
    helper.append_op(
5012
        type='transpose2',
Y
fix ci.  
ying 已提交
5013
        inputs={'X': [x]},
5014 5015
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5016 5017
        attrs={'axis': perm})
    return out
5018 5019


5020 5021 5022 5023 5024 5025 5026
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5027
    """
5028 5029 5030 5031 5032 5033 5034
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5063 5064 5065 5066 5067 5068 5069 5070 5071
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5072 5073 5074
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5075 5076 5077 5078 5079
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5107 5108 5109
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5122
            output.dims = {8, 8}
5123

5124
            output.lod = [[4, 4]]
5125

T
Tink_Y 已提交
5126
    Examples:
5127 5128 5129

        .. code-block:: python

5130 5131
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5132 5133

    """
W
wanghaoshuang 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5144 5145 5146 5147 5148 5149 5150
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5151
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5152
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5153
    helper.append_op(
5154
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5155
    return out
5156 5157


Y
yuyang18 已提交
5158
@templatedoc()
5159
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5160 5161
    """
    ${comment}
5162 5163

    Args:
Y
yuyang18 已提交
5164
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5165 5166
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5167 5168 5169 5170 5171
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5172
        ${out_comment}.
5173 5174

    Examples:
Y
yuyang18 已提交
5175 5176 5177 5178
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5179 5180 5181 5182 5183 5184
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5185
    out = helper.create_variable_for_type_inference(dtype)
5186 5187 5188 5189 5190
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5191
    return helper.append_activation(out)
5192 5193


Y
yuyang18 已提交
5194
@templatedoc()
5195 5196
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5197 5198 5199 5200 5201 5202 5203
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5204 5205

    Args:
Y
yuyang18 已提交
5206 5207
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5208 5209

    Returns:
Y
yuyang18 已提交
5210
        ${out_comment}.
5211 5212
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5213 5214 5215 5216 5217

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5218
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5219 5220 5221 5222 5223 5224
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5225 5226


5227 5228 5229
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5230
                               ignore_index=kIgnoreIndex,
5231 5232
                               numeric_stable_mode=False,
                               return_softmax=False):
5233 5234
    """
    **Softmax With Cross Entropy Operator.**
5235

5236 5237 5238 5239
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5240

5241 5242 5243
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5244

5245 5246 5247
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5248

5249
    The equation is as follows:
5250

5251
    1) Hard label (one-hot label, so every sample has exactly one class)
5252

5253 5254 5255 5256
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5257

5258 5259 5260
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5261

5262 5263 5264 5265
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5266 5267 5268
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5269

S
sneaxiy 已提交
5270 5271 5272 5273 5274 5275 5276 5277
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5278 5279 5280 5281 5282 5283 5284 5285
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5286 5287
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5288
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5289 5290 5291
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5292 5293 5294
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5295
                                    stable algorithm. Default: False
5296
        return_softmax (bool): A flag indicating whether to return the softmax
5297
                               along with the cross entropy loss. Default: False
5298

5299
    Returns:
5300 5301 5302 5303
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5304
                              2-D tensor with shape [N x K].
5305 5306 5307 5308 5309 5310 5311

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5312 5313
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5314 5315
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5316 5317
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5318 5319 5320 5321 5322 5323
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5324 5325 5326 5327 5328
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5329 5330 5331 5332

    if return_softmax:
        return loss, softmax

5333 5334 5335 5336 5337
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5338 5339
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5340
    For each instance, it computes the smooth L1 loss element by element first
5341
    and then sums all the losses. So the shape of ouput Variable is
5342
    [batch_size, 1].
5343

5344 5345
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5346
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5347
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5348
            L1 loss op with same shape as :attr:`x`.
5349
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5350 5351
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5352
            by this tensor element by element.
5353
        outside_weight (Variable|None): A tensor with rank at least 2. This
5354 5355
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5356
            element by element.
5357
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5358 5359
           scalar with default value 1.0.

5360
    Returns:
5361
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5362 5363 5364 5365 5366

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5367 5368
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5369
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5370
            out = fluid.layers.smooth_l1(x=fc, y=label)
5371
    """
5372

5373
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5374 5375
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5388 5389 5390 5391


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5392
    This layer creates the one-hot representations for input indices.
5393 5394

    Args:
Y
Yibing Liu 已提交
5395 5396
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5397 5398

    Returns:
Y
Yibing Liu 已提交
5399
        Variable: The one-hot representations of input.
5400 5401

    Examples:
C
caoying03 已提交
5402
        .. code-block:: python
5403

Y
Yibing Liu 已提交
5404 5405
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5406 5407
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5408
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5409 5410 5411 5412 5413 5414
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5415 5416


Y
Yu Yang 已提交
5417
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5418
    """
Y
yi.wu 已提交
5419 5420 5421
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5422 5423 5424 5425 5426 5427

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5428 5429
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5430 5431 5432 5433 5434 5435

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5436 5437
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5438 5439
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5440 5441 5442 5443 5444
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5445
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5446
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5447 5448
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5449 5450
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5451 5452 5453
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5454 5455


5456
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5457
    """
C
caoying03 已提交
5458 5459
    Gives a new shape to the input Tensor without changing its data.

5460 5461 5462 5463 5464
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5465

5466
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5467

5468 5469 5470 5471
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5472
    2. 0 means the actual dimension value is going to be copied from the
5473 5474 5475 5476
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5477 5478

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5479
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5480
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5481

5482
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5483 5484
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5485 5486
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5487
    dimensions.
C
caoying03 已提交
5488

5489
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5490 5491 5492 5493
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5494 5495

    Args:
5496
        x(variable): The input tensor.
C
caoying03 已提交
5497 5498
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5499 5500 5501 5502 5503
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5504 5505
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5506 5507 5508 5509 5510 5511 5512
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5513
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5514

5515
    Returns:
G
guosheng 已提交
5516 5517 5518 5519
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5520

X
Xin Pan 已提交
5521 5522 5523
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5524 5525
    Examples:
        .. code-block:: python
G
guosheng 已提交
5526

5527
            data = fluid.layers.data(
5528
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5529
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5530
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5531 5532 5533
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5534
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5535 5536 5537 5538 5539
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5540

5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5556
    helper = LayerHelper("reshape2", **locals())
5557 5558
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5559
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5560
    helper.append_op(
5561
        type="reshape2",
X
Xin Pan 已提交
5562
        inputs=inputs,
D
dzhwinter 已提交
5563
        attrs={"shape": shape},
5564 5565
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5566

D
dzhwinter 已提交
5567
    return helper.append_activation(out)
5568

5569

5570
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5571
    """
M
minqiyang 已提交
5572 5573 5574
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5575
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5576

Y
Yibing Liu 已提交
5577 5578
    Examples:
    Case 1:
M
minqiyang 已提交
5579
      Given
Y
Yibing Liu 已提交
5580 5581 5582 5583 5584 5585 5586 5587
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5588
        and
Y
Yibing Liu 已提交
5589 5590 5591
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5592

Y
Yibing Liu 已提交
5593
    Args:
5594
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5595
        axes (list): List of integers, indicating the dimensions to be squeezed.
5596
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5597 5598 5599 5600 5601 5602 5603 5604

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5605
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5606 5607
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5608 5609
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5610
    helper.append_op(
5611
        type="squeeze2",
5612
        inputs={"X": input},
Y
Yibing Liu 已提交
5613
        attrs={"axes": axes},
5614 5615
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5616

5617 5618 5619
    return out


5620
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5621
    """
M
minqiyang 已提交
5622 5623 5624
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5625

M
minqiyang 已提交
5626 5627
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5628
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5629

Y
Yibing Liu 已提交
5630
    Args:
5631
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5632
        axes (list): List of integers, indicating the dimensions to be inserted.
5633
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5634 5635 5636 5637 5638 5639 5640 5641

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5642
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5643 5644
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5645 5646
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5647
    helper.append_op(
5648
        type="unsqueeze2",
5649
        inputs={"X": input},
Y
Yibing Liu 已提交
5650
        attrs={"axes": axes},
5651 5652
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5653

5654 5655
    return out

5656

Y
yangyaming 已提交
5657
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5658
    """
Y
Yibing Liu 已提交
5659
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5660 5661 5662 5663
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5664
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5665 5666 5667 5668 5669 5670

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5671
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5672 5673 5674
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5675
            target_lod: [4, 2]
Y
yangyaming 已提交
5676 5677

            then we get a 1-level LoDTensor:
5678
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5679 5680 5681 5682 5683 5684
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5685
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5686 5687 5688 5689
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5690
                y.data = [[2, 4]]
Y
yangyaming 已提交
5691 5692 5693
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5694
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5695 5696 5697 5698 5699 5700
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5701
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5702 5703 5704 5705
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5706
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5707 5708 5709 5710
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5711
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5712 5713 5714 5715 5716
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5717
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5718
                           from :attr:`y`.
Y
yangyaming 已提交
5719
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5720
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5721 5722

    Returns:
Y
Yibing Liu 已提交
5723
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5724 5725

    Raises:
Y
Yibing Liu 已提交
5726
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5736
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5762
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5791 5792
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5805 5806 5807
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5821 5822 5823 5824


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5825
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5826
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5827

G
guosheng 已提交
5828 5829 5830 5831
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5854
                         The length of :attr:paddings must be
G
guosheng 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5865

G
guosheng 已提交
5866 5867 5868 5869 5870 5871
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5872
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5873 5874 5875 5876 5877 5878 5879
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5880 5881


C
chengduo 已提交
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5913 5914
		And
            pad_value = -1,
C
chengduo 已提交
5915

T
Tink_Y 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5951
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5952 5953 5954 5955 5956 5957 5958 5959 5960
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5961 5962 5963 5964 5965 5966 5967
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5968 5969
    called label-smoothing regularization (LSR).

5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5993
                              be :math:`(1, class\_num)`.
5994 5995
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5996
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6016
    smooth_label = helper.create_variable_for_type_inference(dtype)
6017 6018 6019 6020 6021 6022 6023
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6024 6025


W
wopeizl 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6062 6063


J
jerrywgz 已提交
6064 6065 6066 6067 6068 6069
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6070 6071
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6088 6089 6090
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6091 6092 6093 6094 6095 6096
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6097
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6138 6139
        .. code-block:: python

W
whs 已提交
6140 6141 6142 6143
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6144
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6145 6146 6147 6148 6149 6150
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6151 6152


6153 6154 6155 6156
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6157 6158
                 resample='BILINEAR',
                 actual_shape=None):
6159
    """
Q
qiaolongfei 已提交
6160
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6161

6162
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6163 6164 6165
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6166

6167
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6168

6169
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6170

6171
    Args:
6172
        input (Variable): The input tensor of image resize layer,
6173 6174
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6175
        out_shape(list|tuple|Variable|None): Output shape of image resize
6176 6177
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6178
        scale(float|None): The multiplier for the input height or width.
6179 6180 6181
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6182 6183
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6184
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6185
                       currently.
6186
                       Default: 'BILINEAR'
6187 6188 6189
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6190
                                :attr:`out_shape` and :attr:`scale` specifying
6191 6192 6193 6194 6195 6196 6197
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6198 6199
                                constructing stage.
                                Default: None
6200 6201

    Returns:
Q
update  
qiaolongfei 已提交
6202 6203
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6204

6205 6206 6207
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6208
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6209 6210 6211 6212
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6213 6214 6215
    Examples:
        .. code-block:: python

6216
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6217
    """
6218 6219 6220 6221
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6222 6223
    if resample not in resample_methods:
        raise ValueError(
6224
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6225
        )
6226
    resample_type = resample_methods[resample]
6227
    if out_shape is None and scale is None:
6228
        raise ValueError("One of out_shape and scale must not be None.")
6229
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6230
    dtype = helper.input_dtype()
6231 6232 6233 6234

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6235 6236 6237
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6238
    if out_shape is not None:
6239 6240 6241 6242
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6243
            inputs['OutSize'] = out_shape
6244 6245 6246 6247 6248 6249 6250 6251
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6252 6253 6254 6255
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6256 6257 6258 6259 6260
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6261
    out = helper.create_variable_for_type_inference(dtype)
6262
    helper.append_op(
6263
        type='{}_interp'.format(resample_type),
6264
        inputs=inputs,
6265
        outputs={"Out": out},
6266 6267 6268
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6269
    return out
F
stash  
fengjiayi 已提交
6270 6271


6272
@templatedoc(op_type="bilinear_interp")
6273 6274 6275 6276 6277
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6278
    """
6279 6280
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6281 6282
    in priority order.

6283 6284 6285 6286
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6287 6288
    again in the other direction.

6289
    For details of bilinear interpolation, please refer to Wikipedia:
6290
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6291 6292 6293 6294 6295

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6296

Y
yuyang18 已提交
6297 6298 6299 6300 6301
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6302 6303 6304
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6305
                                :attr:`out_shape` and :attr:`scale` specifying
6306 6307 6308 6309 6310 6311 6312
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6313 6314
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6315 6316 6317

    Returns:
        ${out_comment}.
6318 6319 6320 6321 6322

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6323 6324
    """

6325
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6326 6327


6328
@templatedoc(op_type="nearest_interp")
6329 6330 6331 6332 6333
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6334
    """
6335
    Resize input by performing nearest neighbor interpolation in both the
6336 6337
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6338 6339
    out_shape and scale in priority order.

6340
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6341
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6342 6343 6344 6345 6346

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6347

Y
yuyang18 已提交
6348 6349 6350 6351 6352
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6353 6354 6355
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6356
                                :attr:`out_shape` and :attr:`scale` specifying
6357 6358 6359 6360 6361 6362 6363
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6364 6365
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6366 6367 6368

    Returns:
        ${out_comment}.
6369 6370 6371 6372 6373

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6374 6375
    """

6376
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6377 6378 6379 6380


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6381 6382 6383
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6384 6385 6386 6387 6388 6389 6390
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6391
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6392

6393
    Returns:
Q
update  
qiaolongfei 已提交
6394
        Variable: The output is a 4-D tensor of the shape
6395
        (num_batches, channls, out_h, out_w).
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6406 6407 6408
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6409 6410 6411
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6412 6413
def gather(input, index):
    """
Q
qiaolongfei 已提交
6414 6415
    **Gather Layer**

6416
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6417 6418 6419 6420
    of X indexed by `index` and concatenate them together.

    .. math::

6421
        Out = X[Index]
W
whs 已提交
6422 6423 6424 6425 6426 6427 6428


    .. code-block:: text


                Given:

6429 6430
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6441
        input (Variable): The source input with rank>=1.
W
whs 已提交
6442 6443 6444 6445 6446 6447
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6448

W
whs 已提交
6449 6450 6451 6452 6453 6454
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6455
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6456 6457 6458 6459 6460 6461 6462 6463
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6495
    out = helper.create_variable_for_type_inference(dtype)
6496 6497 6498 6499 6500 6501 6502 6503 6504
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6555
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6556 6557 6558 6559 6560 6561 6562 6563 6564
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6578

6579 6580 6581
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6582
    """
F
stash  
fengjiayi 已提交
6583
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6584
    dtype = x.dtype
X
Xin Pan 已提交
6585
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6586
    if seed is None:
6587
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6588
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6589
    if isinstance(seed, int):
F
fengjiayi 已提交
6590 6591 6592 6593 6594
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6595 6596 6597 6598
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6599
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6600 6601
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6602 6603
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6604
    return out
W
whs 已提交
6605 6606


6607
def log(x, name=None):
W
wanghaoshuang 已提交
6608 6609 6610 6611 6612
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6613
        Out = \\ln(x)
W
wanghaoshuang 已提交
6614 6615

    Args:
6616
        x (Variable): Input tensor.
6617 6618
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6619 6620 6621 6622 6623 6624 6625 6626

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6627
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6628 6629
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6630
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6631
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6632
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6633 6634 6635
    return out


6636
def relu(x, name=None):
W
wanghaoshuang 已提交
6637 6638
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6639
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6640 6641 6642 6643
    the tensor elementwise.

    .. math::

6644
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6645 6646

    Args:
6647
        x (Variable): The input tensor.
6648 6649
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6650 6651 6652 6653 6654 6655 6656 6657

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6658
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6659 6660
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6661
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6662
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6663 6664
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6665
    return out
6666 6667


C
chengduo 已提交
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6709 6710 6711
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6712 6713 6714 6715
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6716
    .. math::
6717 6718

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6719

6720
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6721 6722 6723 6724 6725
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6726
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6727
                           Its shape should be the same as input.
6728
        num_classes (int): The possible number of labels.
W
whs 已提交
6729 6730 6731 6732

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6733
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6734 6735 6736 6737

    Examples:

        .. code-block:: python
6738

W
whs 已提交
6739 6740 6741 6742
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6743 6744 6745
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6746 6747
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6748 6749
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6750
        outputs={
W
whs 已提交
6751 6752 6753
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6754 6755 6756
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6825
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6826 6827 6828 6829 6830

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6831
            isinstance(shape, Variable)):
6832 6833 6834 6835 6836
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6837
    out = helper.create_variable_for_type_inference(x.dtype)
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6855 6856


W
whs 已提交
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6874

W
whs 已提交
6875
              out_shape = [2, 3, 5, 5]
6876

W
whs 已提交
6877
          Step 1:
6878

W
whs 已提交
6879 6880 6881
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6882

W
whs 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6953
            isinstance(out_shape, Variable)):
W
whs 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6975 6976 6977 6978 6979 6980 6981 6982
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6983

6984 6985
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6986

6987 6988 6989 6990
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6991

6992 6993 6994 6995 6996
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6997 6998 6999

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7035
    out = helper.create_variable_for_type_inference("float32")
7036 7037 7038 7039 7040 7041 7042 7043

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7044 7045


M
minqiyang 已提交
7046 7047
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7048
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7049
    which compares left score and right score passed in.
M
minqiyang 已提交
7050
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7051 7052 7053 7054 7055 7056

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7057
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7058 7059
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7060
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7061 7062 7063
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7064
       Variable: The ranking loss.
M
minqiyang 已提交
7065
    Raises:
M
minqiyang 已提交
7066
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7067 7068 7069 7070 7071 7072 7073
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7074
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7075 7076 7077 7078 7079 7080
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7081 7082
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7106
        .. code-block:: text
W
whs 已提交
7107

T
Tink_Y 已提交
7108
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7109

T
Tink_Y 已提交
7110 7111
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7112

T
Tink_Y 已提交
7113
	      Case 0:
M
minqiyang 已提交
7114

T
Tink_Y 已提交
7115 7116 7117
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7118

T
Tink_Y 已提交
7119 7120 7121
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7122

T
Tink_Y 已提交
7123
	      Case 1:
M
minqiyang 已提交
7124

T
Tink_Y 已提交
7125 7126
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7127

T
Tink_Y 已提交
7128 7129 7130
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7131

T
Tink_Y 已提交
7132
	      Case 2:
M
minqiyang 已提交
7133

T
Tink_Y 已提交
7134 7135
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7136

T
Tink_Y 已提交
7137 7138 7139
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7140 7141


W
whs 已提交
7142 7143
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7144
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7168
    out = helper.create_variable_for_type_inference(dtype)
7169 7170 7171 7172 7173 7174 7175 7176 7177
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7178
    helper.append_op(
7179
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7180 7181 7182 7183

    return out


7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7196 7197 7198 7199 7200

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7201 7202
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7203 7204
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7226 7227 7228 7229 7230

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7231 7232
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7233 7234
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7235
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7256 7257 7258 7259 7260

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7261 7262
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7263 7264
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7265
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7287 7288 7289 7290 7291

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7292
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7293
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7294 7295
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7296
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7319 7320 7321 7322 7323

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7324 7325
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7326 7327
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7328
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7350 7351 7352 7353 7354

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7355 7356
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7357 7358
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7359
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7360 7361 7362 7363 7364 7365 7366 7367
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7368 7369 7370 7371
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7372
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7373 7374 7375

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7376
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7377
          weight (alpha).
J
jerrywgz 已提交
7378
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7379 7380 7381
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7382
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7383
          will be named automatically.
J
jerrywgz 已提交
7384 7385 7386 7387 7388 7389 7390 7391

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7392
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7406
        attr=helper.param_attr,
J
jerrywgz 已提交
7407 7408 7409 7410
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7411
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7412 7413 7414 7415 7416 7417 7418 7419 7420
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7431
    Returns:
7432
        output(${out_type}): ${out_comment}
7433 7434 7435 7436 7437 7438 7439

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7440 7441
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7442
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7461
    Returns:
7462
        output(${out_type}): ${out_comment}
7463 7464 7465 7466 7467 7468 7469

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7470 7471
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7472
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7490
    Returns:
7491
        output(${out_type}): ${out_comment}
7492 7493 7494 7495 7496 7497 7498

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7499 7500
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7501
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7502 7503 7504 7505 7506 7507 7508 7509
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7523

7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7534 7535
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7551
        ValueError: If axis is not in range [0, rank(x)].
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7568 7569
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7570
    helper.append_op(
7571
        type='flatten2',
7572
        inputs={"X": x},
7573 7574
        outputs={'Out': out,
                 'XShape': x_shape},
7575 7576
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7577 7578


C
chenweihang 已提交
7579
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7580
    """
C
chenweihang 已提交
7581
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7582
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7583 7584
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7585

C
chenweihang 已提交
7586 7587 7588 7589
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7590
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7591 7592 7593 7594 7595 7596
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7597
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7598 7599 7600
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7601 7602 7603
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7615 7616
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7617 7618 7619 7620 7621 7622
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7623
    return out
7624

7625

S
sneaxiy 已提交
7626 7627 7628 7629 7630 7631 7632 7633 7634
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7635

S
sneaxiy 已提交
7636
    .. math::
7637

S
sneaxiy 已提交
7638 7639 7640
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7641
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7642 7643 7644 7645
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7646 7647 7648
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7649 7650
    Returns:
        Variable: The output sequence mask.
7651

S
sneaxiy 已提交
7652 7653
    """

Q
qingqing01 已提交
7654
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7655
    if name is None:
X
Xin Pan 已提交
7656
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7657
    else:
X
Xin Pan 已提交
7658
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7659

Q
qingqing01 已提交
7660 7661 7662
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7663 7664
        outputs={'Y': out},
        attrs={
7665
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7666 7667 7668
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7669 7670


X
Xin Pan 已提交
7671
def stack(x, axis=0):
S
sneaxiy 已提交
7672 7673 7674 7675
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7676 7677 7678 7679 7680 7681 7682

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7683
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7684
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7685 7686

    Args:
7687
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7688
        axis (int|None): The axis along which all inputs are stacked.
7689

S
sneaxiy 已提交
7690 7691
    Returns:
        Variable: The stacked variable.
7692

S
sneaxiy 已提交
7693 7694
    """

X
Xin Pan 已提交
7695 7696 7697 7698 7699 7700
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7701
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7702
    helper.append_op(
S
sneaxiy 已提交
7703 7704
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7705

X
Xin Pan 已提交
7706
    return out
D
dzhwinter 已提交
7707 7708 7709 7710 7711 7712 7713


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7714

D
dzhwinter 已提交
7715 7716 7717
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7718
    raised.
D
dzhwinter 已提交
7719 7720

    Args:
M
minqiyang 已提交
7721
        x (Variable): Input variable.
D
dzhwinter 已提交
7722 7723
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7724

D
dzhwinter 已提交
7725 7726
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7727

D
dzhwinter 已提交
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7739
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7740 7741 7742 7743 7744 7745 7746 7747

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7760

W
whs 已提交
7761 7762 7763 7764
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7765

W
whs 已提交
7766
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7767

W
whs 已提交
7768
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7769

W
whs 已提交
7770 7771 7772 7773
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7774

W
whs 已提交
7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7791
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7792 7793 7794 7795 7796 7797
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7798 7799


G
fix  
gongweibao 已提交
7800 7801 7802
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7803
@templatedoc()
G
fix  
gongweibao 已提交
7804 7805 7806 7807 7808 7809 7810 7811 7812
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7813
    ${comment}
G
fix  
gongweibao 已提交
7814 7815

    Args:
G
gongweibao 已提交
7816 7817 7818
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7819
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7820 7821 7822
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7823 7824
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7825
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7826

7827 7828 7829 7830 7831
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7832 7833 7834
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7835
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7852 7853


G
gongweibao 已提交
7854
@templatedoc()
X
Xin Pan 已提交
7855
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7856
    """
G
gongweibao 已提交
7857
    ${comment}
G
fix  
gongweibao 已提交
7858 7859

    Args:
G
gongweibao 已提交
7860 7861 7862 7863
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7864 7865 7866
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7867
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7868

7869 7870 7871 7872
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7873 7874 7875
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7876
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7887
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7888 7889 7890 7891 7892
        })

    return out


G
gongweibao 已提交
7893
@templatedoc()
G
fix  
gongweibao 已提交
7894
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7895
    """
G
gongweibao 已提交
7896
    ${comment}
G
fix  
gongweibao 已提交
7897 7898

    Args:
G
gongweibao 已提交
7899 7900 7901 7902
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7903
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7904 7905

    Returns:
G
gongweibao 已提交
7906
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7907

7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7918 7919 7920
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7921
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7933
@templatedoc()
G
fix  
gongweibao 已提交
7934 7935 7936 7937 7938 7939 7940 7941 7942
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7943
    ${comment}
G
fix  
gongweibao 已提交
7944 7945

    Args:
G
gongweibao 已提交
7946 7947
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7948
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7949 7950 7951 7952
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7953
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7954 7955

    Returns:
G
gongweibao 已提交
7956
        out (Variable): ${out_comment}
7957 7958 7959 7960 7961 7962 7963 7964

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7965 7966 7967
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7968
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7987
@templatedoc()
X
Xin Pan 已提交
7988
def sum(x):
G
fix  
gongweibao 已提交
7989
    """
G
gongweibao 已提交
7990
    ${comment}
G
fix  
gongweibao 已提交
7991 7992

    Args:
G
gongweibao 已提交
7993
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7994 7995

    Returns:
G
gongweibao 已提交
7996
        out (Variable): ${out_comment}
7997 7998 7999 8000 8001 8002

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8003 8004 8005
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8006 8007
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8008 8009 8010 8011
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8012
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8013 8014 8015 8016

    return out


G
gongweibao 已提交
8017
@templatedoc()
G
fix  
gongweibao 已提交
8018 8019
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8020
    ${comment}
G
fix  
gongweibao 已提交
8021 8022

    Args:
G
gongweibao 已提交
8023 8024 8025 8026
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8027 8028

    Returns:
G
gongweibao 已提交
8029
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8030

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8042 8043 8044
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8045 8046
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8058
@templatedoc()
G
fix  
gongweibao 已提交
8059 8060
def shape(input):
    """
G
gongweibao 已提交
8061
    ${comment}
G
fix  
gongweibao 已提交
8062 8063

    Args:
G
gongweibao 已提交
8064
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8065 8066

    Returns:
G
gongweibao 已提交
8067
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8068

8069 8070 8071 8072 8073 8074
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8075 8076 8077
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8078 8079
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8080
    helper.append_op(
G
fix  
gongweibao 已提交
8081
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8082 8083

    return out
G
merge  
gongweibao 已提交
8084 8085


S
sneaxiy 已提交
8086 8087 8088 8089 8090 8091 8092 8093
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8094 8095
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8096
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8097 8098 8099
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8100

S
sneaxiy 已提交
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8112
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8113 8114 8115 8116 8117 8118 8119 8120
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8121
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8122
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8123 8124 8125 8126 8127 8128

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8129
    if name is None:
X
Xin Pan 已提交
8130
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8131 8132 8133
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8134 8135 8136 8137 8138 8139 8140 8141 8142 8143

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8144
    return helper.append_activation(out)
S
sneaxiy 已提交
8145 8146


X
Xin Pan 已提交
8147
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8148 8149 8150
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8151
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8152 8153 8154
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8155
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8156 8157 8158
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8159
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8160 8161 8162
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8163
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8164 8165 8166
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8167
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8168 8169 8170
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8171
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8183 8184
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8185
        ])
M
minqiyang 已提交
8186 8187


8188
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8189 8190
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8191 8192
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8193 8194 8195

    if out is None:
        if name is None:
X
Xin Pan 已提交
8196
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8212
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8224 8225 8226 8227 8228 8229 8230 8231 8232

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8233 8234 8235 8236 8237 8238 8239
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8240
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8252 8253 8254 8255 8256 8257 8258 8259 8260

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8261 8262 8263 8264 8265 8266 8267
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8268
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8280 8281 8282 8283 8284 8285 8286 8287 8288

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8289 8290 8291 8292 8293 8294 8295
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8296
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8297 8298 8299 8300 8301 8302 8303 8304 8305 8306
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8307 8308 8309 8310 8311 8312 8313

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8314 8315 8316 8317
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8333 8334 8335 8336 8337 8338 8339

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8340 8341 8342 8343 8344
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8345 8346 8347 8348
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8372 8373 8374 8375 8376 8377 8378

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8379 8380 8381 8382 8383
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8384 8385 8386 8387
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8388 8389 8390 8391 8392 8393 8394 8395

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8414
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8467
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8477 8478
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8479 8480 8481 8482 8483 8484
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8485 8486 8487 8488
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8489 8490 8491 8492 8493 8494
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8495
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8496 8497 8498 8499 8500 8501 8502 8503 8504
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8505
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8506 8507 8508 8509 8510 8511 8512 8513
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8514
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8535
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8546 8547


J
JiabinYang 已提交
8548
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8549
    """
J
JiabinYang 已提交
8550
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8551 8552 8553

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8554
    The attr blocksize indicates the input block size.
8555 8556

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8557
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8558 8559

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8560
    (but keeping all data)
J
JiabinYang 已提交
8561

J
JiabinYang 已提交
8562
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8563
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8564 8565 8566 8567 8568
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8569
    Args:
J
JiabinYang 已提交
8570
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8571
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8572 8573

    Returns:
J
JiabinYang 已提交
8574
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8575 8576

    Raises:
J
JiabinYang 已提交
8577
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8578 8579 8580 8581 8582 8583

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8584
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8585
                x=data, blocksize=2)
J
JiabinYang 已提交
8586 8587
    """

J
JiabinYang 已提交
8588
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8589

J
JiabinYang 已提交
8590 8591
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8592 8593

    if name is None:
J
JiabinYang 已提交
8594 8595
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8596 8597 8598 8599 8600
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8601
        type="space_to_depth",
J
JiabinYang 已提交
8602
        inputs={"X": x},
J
JiabinYang 已提交
8603
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8604
        outputs={"Out": out})
J
JiabinYang 已提交
8605 8606
    return out

J
JiabinYang 已提交
8607

S
sneaxiy 已提交
8608 8609
@templatedoc()
def sequence_reverse(x, name=None):
8610
    """
S
sneaxiy 已提交
8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8622
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8633 8634


8635 8636 8637 8638 8639 8640
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8641

8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8661
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8674 8675


B
barrierye 已提交
8676
def similarity_focus(input, axis, indexes, name=None):
8677
    """
B
barrierye 已提交
8678
    SimilarityFocus Operator
B
barrierye 已提交
8679 8680

    Generate a similarity focus mask with the same shape of input using the following method:
8681 8682 8683
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8684
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8685 8686 8687 8688 8689 8690 8691
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8692
       each index.
B
barrierye 已提交
8693 8694 8695 8696
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8746
    Args:
8747
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8748
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8749
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8750
            1, 2 or 3.
B
barrierye 已提交
8751
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8752 8753

    Returns:
8754
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8755
            as the input.
8756

B
barrierye 已提交
8757 8758 8759
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8760 8761
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8774 8775 8776 8777 8778
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8779 8780 8781 8782 8783 8784 8785
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8786 8787


M
minqiyang 已提交
8788 8789
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8790 8791
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8792 8793
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8832
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8833
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8834 8835 8836 8837 8838 8839 8840 8841 8842

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8843 8844
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8845 8846
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8847 8848 8849 8850 8851 8852 8853
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8854 8855


D
dengkaipeng 已提交
8856
@templatedoc()
8857 8858
def grid_sampler(x, grid, name=None):
    """
8859
    This operation samples input X by using bilinear interpolation based on
8860
    flow field grid, which is usually gennerated by affine_grid. The grid of
8861 8862 8863 8864
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8865
    interpolation value of 4 nearest corner points.
8866 8867 8868 8869 8870 8871 8872 8873

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8874
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8904 8905

    Args:
8906 8907 8908
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8909 8910

    Returns:
8911
        out(Variable): Output of shape [N, C, H, W] data samples input X
8912 8913 8914 8915 8916 8917 8918 8919 8920
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8921 8922 8923 8924 8925 8926 8927 8928 8929
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8930
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8931 8932
    ipts = {'X': x, 'Grid': grid}

8933
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8934 8935 8936
    return out


G
gmcather 已提交
8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9031 9032 9033 9034 9035 9036 9037 9038 9039 9040


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9041
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9042

Q
Qiao Longfei 已提交
9043
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9044 9045 9046
    For example:

    .. math::
9047
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9048

Q
Qiao Longfei 已提交
9049
    In this formula:
9050 9051
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9052
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9053
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9054 9055 9056
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9057 9058
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9059 9060 9061
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9062
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9063
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9064
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9065 9066 9067 9068
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9069
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9070 9071 9072 9073

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9074
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9075 9076
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9077
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9078 9079 9080 9081

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9082
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out