slice_op.cc 7.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
W
whs 已提交
18 19 20 21 22 23 24 25 26 27 28
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
W
whs 已提交
30 31 32 33 34 35 36 37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input (Input) of slice op should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output (Out) of slice op should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE(in_dims.size() < 7,
                   "The rank of input should be less than 7.");
    framework::DDim out_dims(in_dims);
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
42
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
whs 已提交
43 44 45 46 47 48

    PADDLE_ENFORCE_EQ(starts.size(), ends.size());
    PADDLE_ENFORCE_EQ(starts.size(), axes.size());
    int dim_value, start, end;
    for (size_t i = 0; i < axes.size(); ++i) {
      dim_value = out_dims[axes[i]];
49 50 51 52 53 54 55 56 57 58 59
      if (dim_value > 0) {
        start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
        end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
        start = std::max(start, 0);
        end = std::max(end, 0);
        // start = std::min(start, dim_value);
        end = std::min(end, dim_value);
        // start = std::min(start, end);
        PADDLE_ENFORCE_GT(end, start, "end should greater than start");
        out_dims[axes[i]] = end - start;
      }
W
whs 已提交
60
    }
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    // generate new shape
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        if (ctx->IsRuntime()) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                            "decrease dim should be 1");
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }

W
whs 已提交
85
    ctx->SetOutputDim("Out", out_dims);
J
jerrywgz 已提交
86 87 88
    if (axes[0] != 0) {
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
89 90 91 92
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
93
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
94
    return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
95
                                   ctx.Input<Tensor>("Input")->place());
W
whs 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
};

class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "Tensor of data to extract slices from.");
    AddOutput("Out", "Sliced data tensor.");

    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
        "(list<int>) Starting indices of corresponding axis in `axes`");
    AddAttr<std::vector<int>>(
        "ends",
        "(list<int>) Starting indices of corresponding axis in `axes`.");
115 116
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
117 118 119 120 121
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
122
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
123
end dimension for each axis in the list of axes, it uses this information
124 125
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
126
of that dimension. If the value passed to start or end is larger than
127 128
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
129
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
130 131
Following examples will explain how slice works:

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
150 151 152 153
)DOC");
  }
};

154 155 156 157 158 159 160 161 162 163 164 165 166 167
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"), "Input should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
168 169 170 171 172 173 174

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
  }
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
};

class SliceOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* bind = new framework::OpDesc();
    bind->SetInput("Input", Input("Input"));
    bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    bind->SetAttrMap(Attrs());
    bind->SetType("slice_grad");
    return std::unique_ptr<framework::OpDesc>(bind);
  }
};

193 194 195
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(SliceOpGradNoNeedBufferVarsInference,
                                      "Input");

W
whs 已提交
196 197 198 199 200
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
201
                  ops::SliceOpGradMaker);
202 203
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
                  ops::SliceOpGradNoNeedBufferVarsInference);
W
whs 已提交
204 205 206 207 208 209

REGISTER_OP_CPU_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>);
210 211 212 213 214 215

REGISTER_OP_CPU_KERNEL(
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>);