executor.cc 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
S
sneaxiy 已提交
17 18 19 20
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
Y
Yang Yang 已提交
21

S
sneaxiy 已提交
22
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
23 24 25 26 27
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
28
#include "paddle/fluid/framework/threadpool.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
30
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
32
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
34
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
35

36
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
37
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
38
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
39 40
#endif

D
dzhwinter 已提交
41
DECLARE_bool(benchmark);
42
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
43 44 45

namespace paddle {
namespace framework {
X
Xin Pan 已提交
46 47 48 49 50
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
51

Q
Qiao Longfei 已提交
52
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
53 54 55 56 57 58 59 60
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
61
  }
S
sneaxiy 已提交
62
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
63
}
Y
Yu Yang 已提交
64

Q
Qiao Longfei 已提交
65
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
66
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
67
}
Y
Yu Yang 已提交
68

D
dzhwinter 已提交
69
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
70

Y
Yancey1989 已提交
71
void Executor::Close() {
W
Wu Yi 已提交
72
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
73 74
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
75 76 77
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
78
#endif
Y
Yancey1989 已提交
79
}
W
Wu Yi 已提交
80

L
Liu Yiqun 已提交
81 82 83
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
84 85 86 87 88 89 90 91 92 93 94 95 96 97

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
98
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
99 100
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
101 102
      } else {
        auto* ptr = scope->Var(var->Name());
103
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
104 105
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
106 107 108 109 110
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
111
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
112 113
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
114 115 116 117
    }
  }
}

Y
Yu Yang 已提交
118
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
119 120 121
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
122
  platform::RecordBlock b(block_id);
123
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
124
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
125
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
126 127
}

128 129 130 131 132 133 134
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
135
    const BlockDesc& block,
L
Liu Yiqun 已提交
136
    const std::map<std::string, const LoDTensor*>& feed_targets,
137 138
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
139
  for (auto* op : block.AllOps()) {
140 141
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
142
      // The input variable's name of feed_op should be feed_holder_name.
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

158
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
159
      // When feed operator are present, so should be feed_holder.
160 161 162 163 164 165 166
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
167 168 169 170 171 172 173 174 175 176 177 178
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
179 180
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
181 182
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
183
  for (auto* op : block.AllOps()) {
184 185
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
186
      // The output variable's name of fetch_op should be fetch_holder_name.
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

202
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
203
      // When fetch operator are present, so should be fetch_holder.
204 205 206 207 208 209 210
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
211 212 213 214 215 216
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
217 218
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
219 220
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
221
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
222
  platform::RecordBlock b(kProgramId);
223
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
224
  bool has_feed_ops =
225
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
226
  bool has_fetch_ops =
227
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
228 229

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
230
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
231
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
232 233
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
234
  }
235 236
  auto* global_block = copy_program->MutableBlock(0);

237
  if (!has_feed_ops) {
238 239
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
240
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
241 242 243
    feed_holder->SetPersistable(true);

    int i = 0;
244
    for (auto& feed_target : (*feed_targets)) {
245
      std::string var_name = feed_target.first;
M
minqiyang 已提交
246
      VLOG(3) << "feed target's name: " << var_name;
247 248 249 250 251 252 253 254 255 256 257 258 259

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

260
  if (!has_fetch_ops) {
261 262
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
263
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
264 265 266
    fetch_holder->SetPersistable(true);

    int i = 0;
267
    for (auto& fetch_target : (*fetch_targets)) {
268
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
269
      VLOG(3) << "fetch target's name: " << var_name;
270 271 272 273 274 275 276 277 278 279 280 281 282

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

283
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
284 285 286
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
287 288
}

Q
Qiao Longfei 已提交
289
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
290
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
291
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
292 293
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
294 295 296 297 298
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
299 300 301 302 303 304
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
305
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
306
  return ctx;
Y
Yu Yang 已提交
307 308
}

T
refine  
typhoonzero 已提交
309
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
310
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
311 312
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
313 314 315 316
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
317
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
318
  size_t idx = 0;
T
typhoonzero 已提交
319 320
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
321
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
322 323 324 325
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
326 327 328 329 330
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
331
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
332
    ++idx;
T
typhoonzero 已提交
333 334 335 336
  }
  return result;
}

Y
Yu Yang 已提交
337
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
338 339
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
340
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
341 342 343 344
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
345 346
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
347
  }
Y
Yu Yang 已提交
348

S
sneaxiy 已提交
349
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
350
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
351 352 353
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
354 355
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
356
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
357
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
358 359
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
360
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
361 362 363
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
364
#endif
S
sneaxiy 已提交
365 366
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
367 368 369
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
370 371
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
372 373 374
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
375 376
  }

Y
Yu Yang 已提交
377
  for (auto& op : ctx->ops_) {
378
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
379

S
fix bug  
sneaxiy 已提交
380
    if (gc) {
S
sneaxiy 已提交
381
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
382
    }
Y
Yu Yang 已提交
383
  }
S
sneaxiy 已提交
384

S
fix bug  
sneaxiy 已提交
385
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
386

Q
qiaolongfei 已提交
387
  if (local_scope != scope) {
Y
Yu Yang 已提交
388
    scope->DeleteScope(local_scope);
389
  } else {
Q
qiaolongfei 已提交
390 391 392 393 394
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
395 396
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
397 398
      scope->DropKids();
    }
Y
Yu Yang 已提交
399 400 401
  }
}

402 403
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
404
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
405 406 407
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
408 409
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

410
  PADDLE_ENFORCE(
411
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
412 413
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
414
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
415 416
      "Program in the prepared context should has fetch_ops.");

417 418 419 420 421
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
422 423
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
424 425 426
    }
  }

W
Wu Yi 已提交
427
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
428 429 430 431 432 433

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
434
      *(*fetch_targets)[fetch_target_name] =
435 436 437 438 439
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

440 441
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
442
  VLOG(3) << "use_mkldnn=True";
443 444 445 446 447 448 449 450
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
451 452 453
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
454 455
#endif
}
Q
qijun 已提交
456 457
}  // namespace framework
}  // namespace paddle