lod_tensor.cc 11.6 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
21 22 23 24 25

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
26 27 28 29

namespace paddle {
namespace framework {

武毅 已提交
30
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
31
  os << "{";
武毅 已提交
32
  for (auto &v : lod) {
33
    os << "{";
L
Liu Yiqun 已提交
34
    bool is_first = true;
武毅 已提交
35
    for (auto &i : v) {
L
Liu Yiqun 已提交
36 37 38 39 40 41
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
42 43 44 45 46 47 48 49
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
50 51 52
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

53 54 55 56 57 58 59 60 61 62 63
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
    framework::Copy(t, platform::CPUPlace(), &tt);
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
64 65 66 67 68 69 70 71 72 73 74 75
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

Q
Qiao Longfei 已提交
76 77 78 79 80 81
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
82
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
83
                 size_t elem_end) {
84 85 86 87 88 89 90 91 92
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
93 94 95
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
96 97
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
98
  }
99 100 101 102
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
103
    for (auto &ele : res[lvl]) {
104 105 106 107 108 109
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
110
LoD ToAbsOffset(const LoD &in) {
111 112 113
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
114 115 116 117
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
118 119 120
    }
  }
  return result;
121 122
}

武毅 已提交
123
bool operator==(const LoD &a, const LoD &b) {
124 125 126 127 128
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
129 130
    const auto &a_level = a[i];
    const auto &b_level = b[i];
131 132 133 134 135 136 137 138 139 140
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
141 142
}

Y
Yan Chunwei 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      LOG(INFO) << "ascending error";
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

202
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
203
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
204 205 206 207 208 209
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
210 211 212 213
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
214
    sub_lod.emplace_back(level_lens);
215 216 217
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
218 219

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
220 221
}

武毅 已提交
222
void AppendLoD(LoD *lod, const LoD &lod_length) {
223 224
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
225
      "The lod_length should has the same size with the appended lod.");
226
  if (lod->empty()) {
Y
Yang Yu 已提交
227 228 229
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
230 231
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
232
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
233
    auto &level = (*lod)[i];
234 235 236 237 238 239
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
240 241
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
242
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
243 244 245
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
246 247 248 249 250 251
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
252 253 254 255 256 257 258 259 260 261 262
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
263 264
  // the 3st field, Tensor
  SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
265 266
}

Y
Yancey 已提交
267 268
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
269
  {
Y
Yancey 已提交
270
    // the 1st field, unit32_t version for LoDTensor
271 272 273
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
274
  }
275 276
  {
    // the 2st field, LoD information
武毅 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
290
  // the 3st filed, Tensor
Y
Yancey 已提交
291
  DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
292 293
}

Y
Yang Yang 已提交
294 295 296
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
297 298 299 300
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
301 302 303 304

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
305
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
306 307 308 309 310 311
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
312

313
    LoDTensor dst;
Y
Yang Yang 已提交
314 315
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
316
      auto &dst_place = places[i];
Y
Yang Yang 已提交
317 318 319 320 321 322
      framework::Copy(src, dst_place, &dst);
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
323
      auto &dst_place = places[i];
Y
Yang Yang 已提交
324 325 326 327 328 329 330 331 332 333 334 335
      framework::Copy(src, dst_place, &dst);

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
336
    results.emplace_back(dst);
Y
Yang Yang 已提交
337 338
  }

Y
Yu Yang 已提交
339
  return results;
Y
Yang Yang 已提交
340 341
}

Y
Yang Yang 已提交
342
void LoDTensor::MergeLoDTensor(
343 344
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
345
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
346

Y
Yang Yang 已提交
347 348
  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
    PADDLE_ENFORCE_EQ(new_type.hash_code(), t->type().hash_code());
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
      auto &offset = sub_lod.back();
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
368 369
  }
  Resize(new_dim);
370
  set_layout(new_layout);
Y
Yang Yang 已提交
371
  set_lod(new_lod);
372
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
373

374
  int begin = 0;
Y
Yang Yang 已提交
375
  for (auto *src : lod_tensors) {
376 377 378 379
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
    framework::Copy(*src, dst_place, &dst);
    begin = end;
Y
Yang Yang 已提交
380 381 382
  }
}

383 384
}  // namespace framework
}  // namespace paddle