executor.cc 19.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
B
baojun-nervana 已提交
20
#include "paddle/fluid/framework/ngraph_operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
23
#include "paddle/fluid/framework/transfer_scope_cache.h"
G
gongweibao 已提交
24
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
26
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
27

D
dzhwinter 已提交
28
DECLARE_bool(benchmark);
29
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
30
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
31 32 33

namespace paddle {
namespace framework {
X
Xin Pan 已提交
34 35 36 37 38
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
39

S
fix bug  
sneaxiy 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }

        auto it = ref_cnts.find(name);
        if (it != ref_cnts.end()) {
          ++it->second;
        } else {
          ref_cnts[name] = 1;
        }
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
76
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
77 78
    const framework::ProgramDesc& prog, size_t block_id,
    const std::vector<std::string>& skip_ref_cnt_vars)
S
sneaxiy 已提交
79 80
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
S
fix bug  
sneaxiy 已提交
81 82
    ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
                                                 skip_ref_cnt_vars);
S
sneaxiy 已提交
83 84
  }
}
Y
Yu Yang 已提交
85

Q
Qiao Longfei 已提交
86
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
87
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
88
}
Y
Yu Yang 已提交
89

S
fix bug  
sneaxiy 已提交
90 91 92
static void DeleteUnusedTensors(
    const Scope& scope, const OperatorBase* op, GarbageCollector<Tensor>* gc,
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
93 94 95 96 97 98 99
  std::unordered_set<Tensor*> erase_tensors;

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
fix bug  
sneaxiy 已提交
100
        if (--(it->second) == 0) {
S
sneaxiy 已提交
101 102
          auto* var = scope.FindVar(name);
          if (var != nullptr) {
M
minqiyang 已提交
103
            VLOG(10) << "Erase tensor \'" << name << "\'";
S
sneaxiy 已提交
104 105 106 107 108
            if (var->IsType<LoDTensor>()) {
              erase_tensors.insert(var->GetMutable<LoDTensor>());
            } else if (var->IsType<SelectedRows>()) {
              erase_tensors.insert(
                  var->GetMutable<SelectedRows>()->mutable_value());
S
fix bug  
sneaxiy 已提交
109 110 111 112 113
            } else if (var->IsType<LoDTensorArray>()) {
              auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
              for (auto& t : *lod_tensor_arr) {
                erase_tensors.insert(&t);
              }
S
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            }
          }
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

  if (!erase_tensors.empty()) {
    gc->Add(erase_tensors);
  }
}

B
baojun-nervana 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static void EnableFusedOp(ExecutorPrepareContext* ctx) {
#ifdef PADDLE_WITH_NGRAPH
  VLOG(3) << "use_ngraph=True";
  auto intervals = FusedOperator::FusedOpIntervals(&ctx->ops_);
  for (auto& interval : intervals) {
    auto* fused_op = new FusedOperator(ctx->prog_, ctx->block_id_,
                                       interval.at(0), interval.at(1));
    *interval[0] = std::unique_ptr<OperatorBase>(fused_op);
  }
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    ctx->ops_.erase(it->at(0) + 1, it->at(1));
  }
#else
  LOG(WARNING)
      << "'NGRAPH' is not supported, Please re-compile with WITH_NGRAPH option";
#endif
}

D
dzhwinter 已提交
147
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
148

Y
Yancey1989 已提交
149
void Executor::Close() {
W
Wu Yi 已提交
150
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
151 152
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
Y
Yancey1989 已提交
153
  ::paddle::operators::distributed::RPCClient::GetInstance<
W
Wu Yi 已提交
154
      ::paddle::operators::distributed::GRPCClient>(0)
Y
Yancey1989 已提交
155
      ->SendComplete();
W
Wu Yi 已提交
156
#endif
Y
Yancey1989 已提交
157
}
W
Wu Yi 已提交
158

Y
Stash  
Yu Yang 已提交
159
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
160
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
161
    var->GetMutable<LoDTensor>();
162
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
163
    var->GetMutable<SelectedRows>();
164
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
165
    var->GetMutable<FeedFetchList>();
166
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
167
    var->GetMutable<FeedFetchList>();
168
  } else if (var_type == proto::VarType::STEP_SCOPES) {
X
Xin Pan 已提交
169
    var->GetMutable<std::vector<framework::Scope*>>();
170
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
171
    var->GetMutable<LoDRankTable>();
172
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
173
    var->GetMutable<LoDTensorArray>();
174
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
175
    var->GetMutable<platform::PlaceList>();
176
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
177
    var->GetMutable<ReaderHolder>();
T
typhoonzero 已提交
178 179
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
180 181
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
182
        "Variable type %d is not in "
F
fengjiayi 已提交
183
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
X
Xin Pan 已提交
184
        "LOD_RANK_TABLE, PLACE_LIST, READER, RAW]",
Y
Yu Yang 已提交
185
        var_type);
Q
QI JUN 已提交
186 187 188
  }
}

L
Liu Yiqun 已提交
189 190 191
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
192 193 194 195 196 197 198 199 200 201 202 203 204 205

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
206
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
207 208
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
209 210
      } else {
        auto* ptr = scope->Var(var->Name());
211
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
212 213
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
214 215 216 217 218
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
219
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
220 221
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
222 223 224 225
    }
  }
}

Y
Yu Yang 已提交
226
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
227
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
228
  platform::RecordBlock b(block_id);
229
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
230 231
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
232 233
}

234 235 236 237 238 239 240
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
241
    const BlockDesc& block,
L
Liu Yiqun 已提交
242
    const std::map<std::string, const LoDTensor*>& feed_targets,
243 244
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
245
  for (auto* op : block.AllOps()) {
246 247
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
248
      // The input variable's name of feed_op should be feed_holder_name.
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

264
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
265
      // When feed operator are present, so should be feed_holder.
266 267 268 269 270 271 272
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
273 274 275 276 277 278 279 280 281 282 283 284
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
285 286
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
287 288
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
289
  for (auto* op : block.AllOps()) {
290 291
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
292
      // The output variable's name of fetch_op should be fetch_holder_name.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

308
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
309
      // When fetch operator are present, so should be fetch_holder.
310 311 312 313 314 315 316
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
317 318 319 320 321 322
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
323 324
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
325 326
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
327
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
328
  platform::RecordBlock b(kProgramId);
329
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
330
  bool has_feed_ops =
331
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
332
  bool has_fetch_ops =
333
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
334 335

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
336
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
337
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
338 339
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
340
  }
341 342
  auto* global_block = copy_program->MutableBlock(0);

343
  if (!has_feed_ops) {
344 345
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
346
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
347 348 349
    feed_holder->SetPersistable(true);

    int i = 0;
350
    for (auto& feed_target : (*feed_targets)) {
351
      std::string var_name = feed_target.first;
M
minqiyang 已提交
352
      VLOG(3) << "feed target's name: " << var_name;
353 354 355 356 357 358 359 360 361 362 363 364 365

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

366
  if (!has_fetch_ops) {
367 368
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
369
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
370 371 372
    fetch_holder->SetPersistable(true);

    int i = 0;
373
    for (auto& fetch_target : (*fetch_targets)) {
374
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
375
      VLOG(3) << "fetch target's name: " << var_name;
376 377 378 379 380 381 382 383 384 385 386 387 388

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

389
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
390 391 392
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
393 394
}

Q
Qiao Longfei 已提交
395
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
396 397
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars) {
Q
Qiyang Min 已提交
398
  std::unique_ptr<ExecutorPrepareContext> ctx(
S
fix bug  
sneaxiy 已提交
399
      new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
Y
Yu Yang 已提交
400 401 402 403 404
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
B
baojun-nervana 已提交
405
  if (FLAGS_use_ngraph) EnableFusedOp(ctx.get());
Q
Qiyang Min 已提交
406
  return ctx;
Y
Yu Yang 已提交
407 408
}

T
refine  
typhoonzero 已提交
409
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
410 411 412 413 414 415
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
416
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
417
  size_t idx = 0;
T
typhoonzero 已提交
418
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
419 420 421 422 423 424
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
      ctx = new ExecutorPrepareContext(program, bid);
    } else {
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
    }
T
typhoonzero 已提交
425 426 427 428 429 430
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
431
    ++idx;
T
typhoonzero 已提交
432 433 434 435
  }
  return result;
}

Y
Yu Yang 已提交
436
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
437 438
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
439
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
440 441 442 443
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
444 445
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
446
  }
Y
Yu Yang 已提交
447

S
sneaxiy 已提交
448 449
  int64_t max_memory_size = GetEagerDeletionThreshold();
  std::unique_ptr<GarbageCollector<Tensor>> gc;
S
fix bug  
sneaxiy 已提交
450
  if (max_memory_size >= 0) {
S
sneaxiy 已提交
451
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
452 453
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
454 455 456 457 458 459 460 461
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(new UnsafeFastGPUGarbageCollector<Tensor>(
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
        gc.reset(new DefaultStreamGarbageCollector<Tensor>(
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
462 463 464 465 466 467 468 469
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
470
  for (auto& op : ctx->ops_) {
471
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
472

S
fix bug  
sneaxiy 已提交
473
    if (gc) {
S
sneaxiy 已提交
474 475
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
                          &(ctx->cur_ref_cnts_));
S
sneaxiy 已提交
476
    }
Y
Yu Yang 已提交
477
  }
S
sneaxiy 已提交
478

S
fix bug  
sneaxiy 已提交
479 480
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
  if (gc) gc->Wait();
S
sneaxiy 已提交
481

Q
qiaolongfei 已提交
482
  if (local_scope != scope) {
Y
Yu Yang 已提交
483
    scope->DeleteScope(local_scope);
484
  } else {
Q
qiaolongfei 已提交
485 486 487 488 489
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
490 491
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
492 493
      scope->DropKids();
    }
Y
Yu Yang 已提交
494 495 496
  }
}

497 498
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
499
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
500 501 502
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
503 504
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

505
  PADDLE_ENFORCE(
506
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
507 508
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
509
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
510 511
      "Program in the prepared context should has fetch_ops.");

512 513 514 515 516
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
517 518
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
519 520 521
    }
  }

W
Wu Yi 已提交
522
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
523 524 525 526 527 528

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
529
      *(*fetch_targets)[fetch_target_name] =
530 531 532 533 534
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

535 536
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
537
  VLOG(3) << "use_mkldnn=True";
538 539 540 541 542 543 544 545
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
546 547 548
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
549 550
#endif
}
Q
qijun 已提交
551 552
}  // namespace framework
}  // namespace paddle