run_detection.cc 13.6 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <fstream>
#include <iostream>
#include <vector>
#include <chrono>
#include <numeric>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"  // NOLINT


using namespace paddle::lite_api;  // NOLINT
using namespace std;

struct Object {
  cv::Rect rec;
  int class_id;
  float prob;
};

// Object for storing all preprocessed data
struct ImageBlob {
  // image width and height
G
Guanghua Yu 已提交
38
  std::vector<int> im_shape_;
G
Guanghua Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  // Buffer for image data after preprocessing
  const float* im_data_;
  // Scale factor for image size to origin image size
  std::vector<float> scale_factor_;
  std::vector<float> mean_;
  std::vector<float> scale_;
};

void PrintBenchmarkLog(std::vector<double> det_time,
                       std::map<std::string, std::string> config,
                       int img_num) {
  std::cout << "----------------- Config info ------------------" << std::endl;
  std::cout << "runtime_device: armv8" << std::endl;
  std::cout << "precision: " << config.at("precision") << std::endl;

  std::cout << "num_threads: " << config.at("num_threads") << std::endl;
  std::cout << "---------------- Data info ---------------------" << std::endl;
  std::cout << "batch_size: " << 1 << std::endl;
  std::cout << "---------------- Model info --------------------" << std::endl;
  std::cout << "Model_name: " << config.at("model_file") << std::endl;
  std::cout << "---------------- Perf info ---------------------" << std::endl;
  std::cout << "Total number of predicted data: " << img_num
            << " and total time spent(s): "
            << std::accumulate(det_time.begin(), det_time.end(), 0) << std::endl;
  std::cout << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] << std::endl;
}

std::vector<std::string> LoadLabels(const std::string &path) {
  std::ifstream file;
  std::vector<std::string> labels;
  file.open(path);
  while (file) {
    std::string line;
    std::getline(file, line);
    std::string::size_type pos = line.find(" ");
    if (pos != std::string::npos) {
      line = line.substr(pos);
    }
    labels.push_back(line);
  }
  file.clear();
  file.close();
  return labels;
}

std::vector<std::string> ReadDict(std::string path) {
  std::ifstream in(path);
  std::string filename;
  std::string line;
  std::vector<std::string> m_vec;
  if (in) {
    while (getline(in, line)) {
      m_vec.push_back(line);
    }
  } else {
    std::cout << "no such file" << std::endl;
  }
  return m_vec;
}

std::vector<std::string> split(const std::string &str,
                               const std::string &delim) {
  std::vector<std::string> res;
  if ("" == str)
    return res;
  char *strs = new char[str.length() + 1];
  std::strcpy(strs, str.c_str());

  char *d = new char[delim.length() + 1];
  std::strcpy(d, delim.c_str());

  char *p = std::strtok(strs, d);
  while (p) {
    string s = p;
    res.push_back(s);
    p = std::strtok(NULL, d);
  }

  return res;
}

std::map<std::string, std::string> LoadConfigTxt(std::string config_path) {
  auto config = ReadDict(config_path);

  std::map<std::string, std::string> dict;
  for (int i = 0; i < config.size(); i++) {
    std::vector<std::string> res = split(config[i], " ");
    dict[res[0]] = res[1];
  }
  return dict;
}

void PrintConfig(const std::map<std::string, std::string> &config) {
  std::cout << "=======PaddleDetection lite demo config======" << std::endl;
  for (auto iter = config.begin(); iter != config.end(); iter++) {
    std::cout << iter->first << " : " << iter->second << std::endl;
  }
  std::cout << "===End of PaddleDetection lite demo config===" << std::endl;
}


// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
                     float* dout,
                     int size,
                     const std::vector<float> mean,
                     const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);
  float* dout_c0 = dout;
  float* dout_c1 = dout + size;
  float* dout_c2 = dout + size * 2;
  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c0++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c0++) = (*(din++) - mean[2]) * scale[2];
  }
}

std::vector<Object> visualize_result(
                        const float* data,
                        int count,
                        float thresh,
                        cv::Mat& image,
                        const std::vector<std::string> &class_names) {
  if (data == nullptr) {
    std::cerr << "[ERROR] data can not be nullptr\n";
    exit(1);
  }
  std::vector<Object> rect_out;
  for (int iw = 0; iw < count; iw++) {
    int oriw = image.cols;
    int orih = image.rows;
    if (data[1] > thresh) {
      Object obj;
      int x = static_cast<int>(data[2]);
      int y = static_cast<int>(data[3]);
      int w = static_cast<int>(data[4] - data[2] + 1);
      int h = static_cast<int>(data[5] - data[3] + 1);
      cv::Rect rec_clip =
          cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
      obj.class_id = static_cast<int>(data[0]);
      obj.prob = data[1];
      obj.rec = rec_clip;
      if (w > 0 && h > 0 && obj.prob <= 1) {
        rect_out.push_back(obj);
        cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
        std::string str_prob = std::to_string(obj.prob);
        std::string text = std::string(class_names[obj.class_id]) + ": " +
                           str_prob.substr(0, str_prob.find(".") + 4);
        int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
        double font_scale = 1.f;
        int thickness = 1;
        cv::Size text_size =
            cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
        float new_font_scale = w * 0.5 * font_scale / text_size.width;
        text_size = cv::getTextSize(
            text, font_face, new_font_scale, thickness, nullptr);
        cv::Point origin;
        origin.x = x + 3;
        origin.y = y + text_size.height + 3;
        cv::putText(image,
                    text,
                    origin,
                    font_face,
                    new_font_scale,
                    cv::Scalar(0, 255, 255),
                    thickness,
                    cv::LINE_AA);

        std::cout << "detection, image size: " << image.cols << ", "
                  << image.rows
                  << ", detect object: " << class_names[obj.class_id]
                  << ", score: " << obj.prob << ", location: x=" << x
                  << ", y=" << y << ", width=" << w << ", height=" << h
                  << std::endl;
      }
    }
    data += 6;
  }
  return rect_out;
}

// Load Model and create model predictor
std::shared_ptr<PaddlePredictor> LoadModel(std::string model_file,
                                           int num_theads) {
  MobileConfig config;
  config.set_threads(num_theads);
  config.set_model_from_file(model_file);

  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);
  return predictor;
}

ImageBlob prepare_imgdata(const cv::Mat& img,
                          std::map<std::string,
                          std::string> config) {
  ImageBlob img_data;
  std::vector<int> target_size_;
  std::vector<std::string> size_str = split(config.at("Resize"), ",");
  transform(size_str.begin(), size_str.end(), back_inserter(target_size_),
            [](std::string const& s){return stoi(s);});
  int width = target_size_[0];
  int height = target_size_[1];
  img_data.im_shape_ = {
G
Guanghua Yu 已提交
273 274
      static_cast<int>(target_size_[0]),
      static_cast<int>(target_size_[1])
G
Guanghua Yu 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  };
      
  img_data.scale_factor_ = {
    static_cast<float>(target_size_[0]) / static_cast<float>(img.rows),
    static_cast<float>(target_size_[1]) / static_cast<float>(img.cols)
  };
  std::vector<float> mean_;
  std::vector<float> scale_;
  std::vector<std::string> mean_str = split(config.at("mean"), ",");
  std::vector<std::string> std_str = split(config.at("std"), ",");
  transform(mean_str.begin(), mean_str.end(), back_inserter(mean_),
            [](std::string const& s){return stof(s);});
  transform(std_str.begin(), std_str.end(), back_inserter(scale_),
            [](std::string const& s){return stof(s);});
  img_data.mean_ = mean_;
  img_data.scale_ = scale_;
  return img_data;
}


void preprocess(const cv::Mat& img, const ImageBlob img_data, float* data) {
  cv::Mat rgb_img;
  cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
  cv::resize(
      rgb_img, rgb_img, cv::Size(img_data.im_shape_[0],img_data.im_shape_[1]),
      0.f, 0.f, cv::INTER_CUBIC);
  cv::Mat imgf;
  rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
  const float* dimg = reinterpret_cast<const float*>(imgf.data);
  neon_mean_scale(
    dimg, data, int(img_data.im_shape_[0] * img_data.im_shape_[1]),
    img_data.mean_, img_data.scale_);
}


void RunModel(std::map<std::string, std::string> config,
              std::string img_path,
              const int repeats,
              std::vector<double>* times) {

  std::string model_file = config.at("model_file");
  std::string label_path = config.at("label_path");
  // Load Labels
  std::vector<std::string> class_names = LoadLabels(label_path);

  auto predictor = LoadModel(model_file, stoi(config.at("num_threads")));
  cv::Mat img = imread(img_path, cv::IMREAD_COLOR);
  auto img_data = prepare_imgdata(img, config);

  auto preprocess_start = std::chrono::steady_clock::now();
  // 1. Prepare input data from image
  // input 0
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 2});
  auto* data0 = input_tensor0->mutable_data<float>();
  data0[0] = img_data.im_shape_[0];
  data0[1] = img_data.im_shape_[1];
  
  // input1
  std::unique_ptr<Tensor> input_tensor1(std::move(predictor->GetInput(1)));
  input_tensor1->Resize({1, 3, img_data.im_shape_[0], img_data.im_shape_[1]});
  auto* data1 = input_tensor1->mutable_data<float>();
  preprocess(img, img_data, data1);

  // input2
  std::unique_ptr<Tensor> input_tensor2(std::move(predictor->GetInput(2)));
  input_tensor2->Resize({1, 2});
  auto* data2 = input_tensor2->mutable_data<float>();
  data2[0] = img_data.scale_factor_[0];
  data2[1] = img_data.scale_factor_[1];
  auto preprocess_end = std::chrono::steady_clock::now();
  // 2. Run predictor
  // warm up
  for (int i = 0; i < repeats / 2; i++)
  {
    predictor->Run();
  }

  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++)
  {
    predictor->Run();
  }
  auto inference_end = std::chrono::steady_clock::now();
  // 3. Get output and post process
  auto postprocess_start = std::chrono::steady_clock::now();
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
  const float* outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();
  int64_t cnt = 1;
  for (auto& i : shape_out) {
    cnt *= i;
  }
  auto rec_out = visualize_result(
      outptr, static_cast<int>(cnt / 6), 0.5f, img, class_names);
  std::string result_name =
      img_path.substr(0, img_path.find(".")) + "_result.jpg";
  cv::imwrite(result_name, img);
  auto postprocess_end = std::chrono::steady_clock::now();
  std::chrono::duration<float> prep_diff = preprocess_end - preprocess_start;
  times->push_back(double(prep_diff.count() * 1000));
  std::chrono::duration<float> infer_diff = inference_end - inference_start;
  times->push_back(double(infer_diff.count() / repeats * 1000));
  std::chrono::duration<float> post_diff = postprocess_end - postprocess_start;
  times->push_back(double(post_diff.count() * 1000));
}

int main(int argc, char** argv) {
  if (argc < 3) {
    std::cerr << "[ERROR] usage: " << argv[0] << " config_path image_path\n";
    exit(1);
  }
  std::string config_path = argv[1];
  std::string img_path = argv[2];

  // load config
  auto config = LoadConfigTxt(config_path);
  PrintConfig(config);

  bool enable_benchmark = bool(stoi(config.at("enable_benchmark")));
  int repeats = enable_benchmark ? 50 : 1;
  std::vector<double> det_times;
  RunModel(config, img_path, repeats, &det_times);
  PrintBenchmarkLog(det_times, config, 1);
  return 0;
}