squeeze_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

Y
yuyang18 已提交
22
class SqueezeOpInferShape : public framework::InferShapeBase {
23
 public:
Y
yuyang18 已提交
24
  void operator()(framework::InferShapeContext *ctx) const override {
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of Squeeze operator should not be null.");
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of Squeeze operator should not be null.");
29

Y
yuyang18 已提交
30
    const auto &x_dims = ctx->GetInputDim("X");
31 32
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE(x_dims.size() <= 6,
33 34
                   "Invalid dimnesions, the rank of Input(X) "
                   "should be in the range of [1, 6] (Eigen limit).");
35

Y
yuyang18 已提交
36
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
37 38
    for (int a : axes) {
      PADDLE_ENFORCE_LT(a, x_dims.size(),
39 40
                        "The squeeze axis should be less than input "
                        "tensor's rank.");
41 42 43 44
    }

    auto out_dims = GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
45 46 47 48 49
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
50 51 52
  }

  static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
Y
yuyang18 已提交
53
                                        const framework::DDim &in_dims) {
54
    size_t num_squeeze_dims = squeeze_dims.size();
55 56 57 58 59 60
    int cnt_squeezed_dims = 0;
    bool should_squeeze[9] = {false};

    // Determines number of dimensions of output tensor after squeeze.
    // Mark and count the dimensions need to be squeezed
    if (num_squeeze_dims == 0) {
61
      for (int idx = 0; idx < in_dims.size(); ++idx) {
62 63 64 65 66 67
        if (in_dims[idx] == 1) {
          should_squeeze[idx] = true;
          ++cnt_squeezed_dims;
        }
      }
    } else {
68
      for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
69 70
        int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
                                            : squeeze_dims[idx];
71
        // Check current index, the upper limit has beed checked in line 36.
72
        PADDLE_ENFORCE(current >= 0,
73 74 75
                       "Invalid axis, the negative axis is out of range.");
        PADDLE_ENFORCE(in_dims[current] == 1,
                       "Invalid axis index, the axis that will be squeezed "
76
                       "should be equal to 1.");
77 78 79 80

        if (!(should_squeeze[current])) {
          ++cnt_squeezed_dims;
        }
81 82 83 84 85 86
        should_squeeze[current] = true;
      }
    }

    // Make output dimensions
    std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
87
    for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
88 89 90 91 92 93 94 95 96
      if (!should_squeeze[in_idx]) {
        output_shape[out_idx++] = in_dims[in_idx];
      }
    }

    return framework::make_ddim(output_shape);
  }
};

Y
yuyang18 已提交
97 98
class SqueezeOp : public framework::OperatorBase {
 public:
C
chenweihang 已提交
99
  using OperatorBase::OperatorBase;
Y
yuyang18 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    auto out_dims = SqueezeOpInferShape::GetOutputShape(axes, x_dims);

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    // Invoke Reshape Op
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

118 119 120
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
121 122
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
123
    AddAttr<std::vector<int>>("axes",
124
                              "(std::vector<int>). List of integers,"
125
                              " indicating the dimensions to squeeze.")
126
        .SetDefault({});
127
    AddComment(R"DOC(
Y
yuyang18 已提交
128 129 130 131 132
        Squeeze Operator.
        
        Remove single-dimensional entries from the shape of a tensor. 
        Takes a parameter axes with a list of axes to squeeze. 
        If axes is not provided, all the single dimensions will be removed from the shape. 
133
        If an axis is selected with shape entry not equal to one, an error is raised.
Y
yuyang18 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
        
        Examples:
        Case 1:
          Given 
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
147 148
          and 
            axes = []
Y
yuyang18 已提交
149 150
          we get:
            Out.shape = (3, 5)
151 152 153 154
    )DOC");
  }
};

Y
yuyang18 已提交
155
class SqueezeGradInferShape : public framework::InferShapeBase {
156
 public:
Y
yuyang18 已提交
157 158 159 160
  void operator()(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
161
  }
Y
yuyang18 已提交
162
};
163

Y
yuyang18 已提交
164 165
class SqueezeGradOp : public framework::OperatorBase {
 public:
C
chenweihang 已提交
166
  using OperatorBase::OperatorBase;
Y
yuyang18 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
        attrs);
    reshape_op->Run(scope, place);
181 182 183 184 185 186
  }
};

}  // namespace operators
}  // namespace paddle

Y
yuyang18 已提交
187 188 189
// Tell linker to use reshape op
USE_OP(reshape);

190 191
namespace ops = paddle::operators;
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
Y
yuyang18 已提交
192
                  ops::SqueezeOpInferShape,
193
                  paddle::framework::DefaultGradOpDescMaker<true>);
Y
yuyang18 已提交
194
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp, ops::SqueezeGradInferShape);