executor.cc 16.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
B
baojun-nervana 已提交
20
#include "paddle/fluid/framework/ngraph_operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
23
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
24
#include "paddle/fluid/framework/variable_helper.h"
G
gongweibao 已提交
25
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
27
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
30
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
31
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
32 33 34

namespace paddle {
namespace framework {
X
Xin Pan 已提交
35 36 37 38 39
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
40

Q
Qiao Longfei 已提交
41 42
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
S
sneaxiy 已提交
43 44 45 46 47
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
    ref_cnts_ = GetNonPersistableReferenceCount<int>(prog_, block_id_);
  }
}
Y
Yu Yang 已提交
48

Q
Qiao Longfei 已提交
49
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
50
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
51
}
Y
Yu Yang 已提交
52

S
sneaxiy 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename RefCntMap>
static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
                                GarbageCollector<Tensor>* gc,
                                RefCntMap* ref_cnts) {
  std::unordered_set<Tensor*> erase_tensors;

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
        if ((it->second)-- == 1) {
          auto* var = scope.FindVar(name);
          if (var != nullptr) {
M
minqiyang 已提交
67
            VLOG(10) << "Erase tensor \'" << name << "\'";
S
sneaxiy 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            if (var->IsType<LoDTensor>()) {
              erase_tensors.insert(var->GetMutable<LoDTensor>());
            } else if (var->IsType<SelectedRows>()) {
              erase_tensors.insert(
                  var->GetMutable<SelectedRows>()->mutable_value());
            }
          }
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

  if (!erase_tensors.empty()) {
    gc->Add(erase_tensors);
  }
}

B
baojun-nervana 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
static void EnableFusedOp(ExecutorPrepareContext* ctx) {
#ifdef PADDLE_WITH_NGRAPH
  VLOG(3) << "use_ngraph=True";
  auto intervals = FusedOperator::FusedOpIntervals(&ctx->ops_);
  for (auto& interval : intervals) {
    auto* fused_op = new FusedOperator(ctx->prog_, ctx->block_id_,
                                       interval.at(0), interval.at(1));
    *interval[0] = std::unique_ptr<OperatorBase>(fused_op);
  }
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    ctx->ops_.erase(it->at(0) + 1, it->at(1));
  }
#else
  LOG(WARNING)
      << "'NGRAPH' is not supported, Please re-compile with WITH_NGRAPH option";
#endif
}

D
dzhwinter 已提交
106
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
107

Y
Yancey1989 已提交
108
void Executor::Close() {
W
Wu Yi 已提交
109
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
110 111
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
Y
Yancey1989 已提交
112
  ::paddle::operators::distributed::RPCClient::GetInstance<
W
Wu Yi 已提交
113
      ::paddle::operators::distributed::GRPCClient>(0)
Y
Yancey1989 已提交
114
      ->SendComplete();
W
Wu Yi 已提交
115
#endif
Y
Yancey1989 已提交
116
}
W
Wu Yi 已提交
117

L
Liu Yiqun 已提交
118 119 120
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
121 122 123 124 125 126 127 128 129 130 131 132 133 134

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
135
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
136 137
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
138 139
      } else {
        auto* ptr = scope->Var(var->Name());
140
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
141 142
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
143 144 145 146 147
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
148
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
149 150
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
151 152 153 154
    }
  }
}

Y
Yu Yang 已提交
155
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
156
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
157
  platform::RecordBlock b(block_id);
158
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
159 160
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
161 162
}

163 164 165 166 167 168 169
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
170
    const BlockDesc& block,
L
Liu Yiqun 已提交
171
    const std::map<std::string, const LoDTensor*>& feed_targets,
172 173
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
174
  for (auto* op : block.AllOps()) {
175 176
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
177
      // The input variable's name of feed_op should be feed_holder_name.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

193
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
194
      // When feed operator are present, so should be feed_holder.
195 196 197 198 199 200 201
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
202 203 204 205 206 207 208 209 210 211 212 213
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
214 215
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
216 217
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
218
  for (auto* op : block.AllOps()) {
219 220
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
221
      // The output variable's name of fetch_op should be fetch_holder_name.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

237
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
238
      // When fetch operator are present, so should be fetch_holder.
239 240 241 242 243 244 245
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
246 247 248 249 250 251
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
252 253
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
254 255
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
256
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
257
  platform::RecordBlock b(kProgramId);
258
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
259
  bool has_feed_ops =
260
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
261
  bool has_fetch_ops =
262
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
263 264

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
265
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
266
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
267 268
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
269
  }
270 271
  auto* global_block = copy_program->MutableBlock(0);

272
  if (!has_feed_ops) {
273 274
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
275
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
276 277 278
    feed_holder->SetPersistable(true);

    int i = 0;
279
    for (auto& feed_target : (*feed_targets)) {
280
      std::string var_name = feed_target.first;
M
minqiyang 已提交
281
      VLOG(3) << "feed target's name: " << var_name;
282 283 284 285 286 287 288 289 290 291 292 293 294

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

295
  if (!has_fetch_ops) {
296 297
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
298
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
299 300 301
    fetch_holder->SetPersistable(true);

    int i = 0;
302
    for (auto& fetch_target : (*fetch_targets)) {
303
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
304
      VLOG(3) << "fetch target's name: " << var_name;
305 306 307 308 309 310 311 312 313 314 315 316 317

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

318
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
319 320 321
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
322 323
}

Q
Qiao Longfei 已提交
324 325
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
Q
Qiyang Min 已提交
326 327
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
328 329 330 331 332
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
B
baojun-nervana 已提交
333
  if (FLAGS_use_ngraph) EnableFusedOp(ctx.get());
Q
Qiyang Min 已提交
334
  return ctx;
Y
Yu Yang 已提交
335 336
}

T
refine  
typhoonzero 已提交
337
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351
    const ProgramDesc& program, const std::vector<int>& block_ids) {
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
  for (auto& bid : block_ids) {
    auto* ctx = new ExecutorPrepareContext(program, bid);
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

Y
Yu Yang 已提交
352
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
353 354
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
355
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
356 357 358 359
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
360 361
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
362
  }
Y
Yu Yang 已提交
363

S
sneaxiy 已提交
364 365
  int64_t max_memory_size = GetEagerDeletionThreshold();
  std::unique_ptr<GarbageCollector<Tensor>> gc;
366 367
  // WhileOp would set keep_kids to true,
  // because WhileGradOp needs the scopes created in WhileOp.
S
sneaxiy 已提交
368 369 370 371
  // Perhaps, we should not perform eager deletion in WhileOp
  // The scopes and variables created by WhileOp would be deleted
  // in WhileGradOp.
  if (max_memory_size >= 0 && !keep_kids) {
S
sneaxiy 已提交
372
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
      gc.reset(new DefaultStreamGarbageCollector<Tensor>(
          boost::get<platform::CUDAPlace>(place_), max_memory_size));
    } else {
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
386
  for (auto& op : ctx->ops_) {
387
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
388 389

    if (gc != nullptr) {
S
sneaxiy 已提交
390 391
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
                          &(ctx->cur_ref_cnts_));
S
sneaxiy 已提交
392
    }
Y
Yu Yang 已提交
393
  }
S
sneaxiy 已提交
394

S
sneaxiy 已提交
395
  if (gc != nullptr) {
S
sneaxiy 已提交
396
    gc->Wait();
S
sneaxiy 已提交
397
  } else {
S
sneaxiy 已提交
398
    platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
399
  }
S
sneaxiy 已提交
400

Q
qiaolongfei 已提交
401
  if (local_scope != scope) {
Y
Yu Yang 已提交
402
    scope->DeleteScope(local_scope);
403
  } else {
Q
qiaolongfei 已提交
404 405 406 407 408
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
409 410
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
411 412
      scope->DropKids();
    }
Y
Yu Yang 已提交
413 414 415
  }
}

416 417
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
418
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
419 420 421
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
422 423
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

424
  PADDLE_ENFORCE(
425
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
426 427
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
428
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
429 430
      "Program in the prepared context should has fetch_ops.");

431 432 433 434 435
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
436 437
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
438 439 440
    }
  }

W
Wu Yi 已提交
441
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
442 443 444 445 446 447

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
448
      *(*fetch_targets)[fetch_target_name] =
449 450 451 452 453
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

454 455
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
456
  VLOG(3) << "use_mkldnn=True";
457 458 459 460 461 462 463 464
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
465 466 467
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
468 469
#endif
}
Q
qijun 已提交
470 471
}  // namespace framework
}  // namespace paddle