vol2col.cc 5.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/vol2col.h"

namespace paddle {
namespace operators {
namespace math {

/*
 * vol = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
class Vol2ColFunctor<platform::CPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& vol, framework::Tensor& col,
                  int stride_depth, int stride_height, int stride_width,
                  int padding_depth, int padding_height,
                  int padding_width) const {
    PADDLE_ENFORCE(vol.dims().size() == 4);
    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

    const T* vol_data = vol.data<T>();
    T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int c_in = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
        int d_pad = d * stride_depth - padding_depth + d_offset;
        for (int h = 0; h < output_height; ++h) {
          int h_pad = h * stride_height - padding_height + h_offset;
          for (int w = 0; w < output_width; ++w) {
            int w_pad = w * stride_width - padding_width + w_offset;

            int col_idx =
                ((c * output_depth + d) * output_height + h) * output_width + w;
            if (h_pad < 0 || h_pad >= input_height || w_pad < 0 ||
                w_pad >= input_width || d_pad < 0 || d_pad >= input_depth) {
C
chengduoZH 已提交
70
              col_data[col_idx] = static_cast<T>(0);
C
chengduoZH 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
            } else {
              int vol_idx =
                  ((c_in * input_depth + d_pad) * input_height + h_pad) *
                      input_width +
                  w_pad;
              col_data[col_idx] = vol_data[vol_idx];
            }
          }
        }
      }
    }
  }
};

/*
 * vol = [input_channels,input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
class Col2VolFunctor<platform::CPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& vol, const framework::Tensor& col,
                  int stride_depth, int stride_height, int stride_width,
                  int padding_depth, int padding_height,
                  int padding_width) const {
    PADDLE_ENFORCE(vol.dims().size() == 4);
    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

    T* vol_data = vol.data<T>();
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int cIm = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
        int d_pad = d * stride_depth - padding_depth + d_offset;
        for (int h = 0; h < output_height; ++h) {
          int h_pad = h * stride_height - padding_height + h_offset;
          for (int w = 0; w < output_width; ++w) {
            int w_pad = w * stride_width - padding_width + w_offset;

            if (h_pad >= 0 && h_pad < input_height && w_pad >= 0 &&
                w_pad < input_width && d_pad >= 0 && d_pad < input_depth) {
              int vol_idx =
                  ((cIm * input_depth + d_pad) * input_height + h_pad) *
                      input_width +
                  w_pad;
              int col_idx =
                  ((c * output_depth + d) * output_height + h) * output_width +
                  w;
              vol_data[vol_idx] += col_data[col_idx];
            }
          }
        }
      }
    }
  }
};

template class Vol2ColFunctor<platform::CPUPlace, float>;
template class Vol2ColFunctor<platform::CPUPlace, double>;
template class Col2VolFunctor<platform::CPUPlace, float>;
template class Col2VolFunctor<platform::CPUPlace, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle