unpool_op.cc 5.8 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14 15 16 17 18 19 20

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
21
  Unpool2dOpMaker(framework::OpProto* proto,
S
sweetsky0901 已提交
22
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
23
      : OpProtoAndCheckerMaker(proto, op_checker) {
S
sweetsky0901 已提交
24 25
    AddInput(
        "X",
S
sweetsky0901 已提交
26 27 28
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
29 30
    AddInput(
        "Indices",
S
sweetsky0901 已提交
31 32 33
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
34 35
    AddOutput(
        "Out",
S
sweetsky0901 已提交
36 37 38 39 40
        "(Tensor) The output tensor of unpool operator."
        "The format of output tensor is also NCHW."
        "Where N is batch size, C is "
        "the number of channels, H and W is the height and "
        "width of feature.");
S
sweetsky0901 已提交
41 42
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
43
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
44
        "of unpooling operator.");
S
sweetsky0901 已提交
45 46
    AddAttr<std::vector<int>>(
        "strides",
S
sweetsky0901 已提交
47
        "(vector, default:{1, 1}), "
S
sweetsky0901 已提交
48
        "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
49
        .SetDefault({1, 1});
S
sweetsky0901 已提交
50 51
    AddAttr<std::vector<int>>(
        "paddings",
S
sweetsky0901 已提交
52
        "(vector defalut:{0,0}), "
S
sweetsky0901 已提交
53
        "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
54
        .SetDefault({0, 0});
S
sweetsky0901 已提交
55 56
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
57 58
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
59
    AddComment(R"DOC(
S
sweetsky0901 已提交
60 61 62
        "Input shape: $(N, C_{in}, H_{in}, W_{in})$
        Output shape: $(N, C_{out}, H_{out}, W_{out})$
        Where
S
sweetsky0901 已提交
63 64 65 66
          $$
            H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
            W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
          $$
S
sweetsky0901 已提交
67 68
        Paper: http://www.matthewzeiler.com/wp-content/uploads/2017
        /07/iccv2011.pdf
S
sweetsky0901 已提交
69 70 71 72 73
        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
74
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
75 76 77 78
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
79 80 81 82 83 84 85
  protected:
    framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
    }
S
sweetsky0901 已提交
86

S
sweetsky0901 已提交
87 88 89 90 91 92
  public:
    using framework::OperatorWithKernel::OperatorWithKernel;
    void InferShape(framework::InferShapeContext* ctx) const override {
      PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
                     "should not be null.");
      PADDLE_ENFORCE(ctx->HasInput("Indices"), "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
93
                   "should not be null.");
S
sweetsky0901 已提交
94
      PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
95
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
      auto in_x_dims = ctx->GetInputDim("X");
      auto in_y_dims = ctx->GetInputDim("Indices");
      std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
      std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
      std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
      std::vector<int> paddings =
        ctx->Attrs().Get<std::vector<int>>("paddings");
      PADDLE_ENFORCE(in_x_dims.size() == 4,
                      "Unpooling intput must be of 4-dimensional.");
      PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
      std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(
          OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
      }
      ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
   }
S
sweetsky0901 已提交
114 115 116
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
117 118 119 120 121 122
  protected:
    framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx) const override {
        return framework::OpKernelType(
          framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
          ctx.device_context());
S
sweetsky0901 已提交
123 124
  }

S
sweetsky0901 已提交
125 126 127 128 129
  public:
    using framework::OperatorWithKernel::OperatorWithKernel;
    void InferShape(framework::InferShapeContext* ctx) const override {
      PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
      PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
130
                                  "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
131 132
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
   }
S
sweetsky0901 已提交
133 134 135 136 137
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
S
sweetsky0901 已提交
138
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
139
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
140 141 142 143 144 145
REGISTER_OP_CPU_KERNEL(
  unpool,ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
  ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
  unpool_grad, ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>,
  ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
146