cudnn_helper.h 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Pass CI  
Yu Yang 已提交
17
#include <vector>
18 19

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

T
typhoonzero 已提交
62 63 64 65 66 67
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
    cudnnStatus_t status = condition;                                \
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
68 69
  } while (false)

D
"fix"  
dzhwinter 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kAverage,
  kMaximumDeterministic,
};

D
"done"  
dzhwinter 已提交
83 84 85 86 87 88
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
89

D
dzhwinter 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
103

D
dzhwinter 已提交
104 105 106 107 108 109 110 111 112 113 114 115
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
116 117
#endif  // CUDNN_VERSION < 6000

D
dangqingqing 已提交
118 119 120
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
121 122 123 124
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
125
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
126 127
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
128
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
129
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
130 131 132
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
133
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
134 135 136 137
    return &v;
  }
};

D
dangqingqing 已提交
138 139 140 141
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
142 143
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
144 145 146 147 148 149 150 151
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
152 153 154 155 156 157
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
158 159
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
160 161 162 163 164 165 166 167
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
168 169
};

C
chengduoZH 已提交
170 171
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
172 173 174 175 176
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
177
    case DataLayout::kNCDHW:
武毅 已提交
178
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
196 197 198
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
199 200
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
201 202
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
203
    }
武毅 已提交
204
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
205
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
206 207 208 209
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
210
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
211 212
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
213 214 215 216 217
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
218 219 220 221
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
240 241
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
242
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
243
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
244 245
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
246 247 248 249 250
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
251
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
252 253
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
254 255 256 257 258
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
259 260
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
261
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
262
                      kernel, groups);
D
dangqingqing 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
284

285
#if !CUDNN_VERSION_MIN(6, 0, 0)
286 287 288 289 290
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
291 292 293
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
294 295 296
    }
#endif

K
Kexin Zhao 已提交
297 298
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
299
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
300
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
301
        CUDNN_CROSS_CORRELATION, compute_type));
302
    return desc_;
D
dangqingqing 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
332
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
333
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
334 335
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
336
    return desc_;
D
dangqingqing 已提交
337 338 339 340 341 342 343
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
  }
  ~ScopedSpatialTransformerDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
    PADDLE_ENFORCE(dynload::cudnnSetSpatialTransformerNdDescriptor(
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

366 367 368 369 370
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
371
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
372 373 374 375 376 377
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

D
dangqingqing 已提交
378 379
}  // namespace platform
}  // namespace paddle