mot.md 3.6 KB
Newer Older
1 2
[English](mot_en.md) | 简体中文

3 4 5 6 7 8 9 10 11
# PP-Human检测跟踪模块

行人检测与跟踪在智慧社区,工业巡检,交通监控等方向都具有广泛应用,PP-Human中集成了检测跟踪模块,是关键点检测、属性行为识别等任务的基础。我们提供了预训练模型,用户可以直接下载使用。

| 任务                 | 算法 | 精度 | 预测速度(ms) |下载链接                                                                               |
|:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: |
| 行人检测/跟踪    |  PP-YOLOE | mAP: 56.3 <br> MOTA: 72.0 | 检测: 28ms <br> 跟踪:33.1ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |

1. 检测/跟踪模型精度为MOT17,CrowdHuman,HIEVE和部分业务数据融合训练测试得到
12
2. 预测速度为T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

## 使用方法

1. 从上表链接中下载模型并解压到```./output_inference```路径下
2. 图片输入时,启动命令如下
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
                                                   --image_file=test_image.jpg \
                                                   --device=gpu
```
3. 视频输入时,启动命令如下
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
                                                   --video_file=test_video.mp4 \
                                                   --device=gpu
```
4. 若修改模型路径,有以下两种方式:

    - ```./deploy/pphuman/config/infer_cfg.yml```下可以配置不同模型路径,检测和跟踪模型分别对应`DET`和`MOT`字段,修改对应字段下的路径为实际期望的路径即可。
    - 命令行中增加`--model_dir`修改模型路径:
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
                                                   --video_file=test_video.mp4 \
                                                   --device=gpu \
                                                   --model_dir det=ppyoloe/
                                                   --do_entrance_counting \
                                                   --draw_center_traj

```
**注意:**
43 44
 - `--do_entrance_counting`表示是否统计出入口流量,不设置即默认为False
 - `--draw_center_traj`表示是否绘制跟踪轨迹,不设置即默认为False。注意绘制跟踪轨迹的测试视频最好是静止摄像头拍摄的。
45 46 47 48 49 50 51 52 53 54 55

测试效果如下:

<div width="1000" align="center">
  <img src="./images/mot.gif"/>
</div>

数据来源及版权归属:天覆科技,感谢提供并开源实际场景数据,仅限学术研究使用

## 方案说明

56
1. 目标检测/多目标跟踪获取图片/视频输入中的行人检测框,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../configs/ppyoloe/README_cn.md)
57 58 59 60 61 62 63 64 65 66 67
2. 多目标跟踪模型方案基于[ByteTrack](https://arxiv.org/pdf/2110.06864.pdf),采用PP-YOLOE替换原文的YOLOX作为检测器,采用BYTETracker作为跟踪器。

## 参考文献
```
@article{zhang2021bytetrack,
  title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
  author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
  journal={arXiv preprint arXiv:2110.06864},
  year={2021}
}
```