batch_operators.py 55.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

M
Mark Ma 已提交
19 20
import typing

Q
qingqing01 已提交
21 22 23 24 25 26
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

import cv2
27
import copy
G
Guanghua Yu 已提交
28
import math
Q
qingqing01 已提交
29
import numpy as np
W
wangxinxin08 已提交
30
from .operators import register_op, BaseOperator, Resize
W
wangguanzhong 已提交
31
from .op_helper import jaccard_overlap, gaussian2D, gaussian_radius, draw_umich_gaussian
G
Guanghua Yu 已提交
32
from .atss_assigner import ATSSAssigner
W
wangxinxin08 已提交
33
from scipy import ndimage
Q
qingqing01 已提交
34

C
cnn 已提交
35
from ppdet.modeling import bbox_utils
Q
qingqing01 已提交
36
from ppdet.utils.logger import setup_logger
W
wangguanzhong 已提交
37
from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
Q
qingqing01 已提交
38 39 40
logger = setup_logger(__name__)

__all__ = [
W
wangguanzhong 已提交
41 42 43 44 45 46 47 48 49 50
    'PadBatch',
    'BatchRandomResize',
    'Gt2YoloTarget',
    'Gt2FCOSTarget',
    'Gt2TTFTarget',
    'Gt2Solov2Target',
    'Gt2SparseRCNNTarget',
    'PadMaskBatch',
    'Gt2GFLTarget',
    'Gt2CenterNetTarget',
51
    'Gt2CenterTrackTarget',
52
    'PadGT',
W
wangxinxin08 已提交
53
    'PadRGT',
Q
qingqing01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
]


@register_op
class PadBatch(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
    """

67
    def __init__(self, pad_to_stride=0):
Q
qingqing01 已提交
68 69 70
        super(PadBatch, self).__init__()
        self.pad_to_stride = pad_to_stride

W
wangxinxin08 已提交
71
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
72 73 74 75 76 77
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

M
Mark Ma 已提交
78
        # multi scale input is nested list
79 80 81
        if isinstance(samples,
                      typing.Sequence) and len(samples) > 0 and isinstance(
                          samples[0], typing.Sequence):
M
Mark Ma 已提交
82 83 84 85
            inner_samples = samples[0]
        else:
            inner_samples = samples

86 87
        max_shape = np.array(
            [data['image'].shape for data in inner_samples]).max(axis=0)
Q
qingqing01 已提交
88 89 90 91 92 93
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

M
Mark Ma 已提交
94
        for data in inner_samples:
Q
qingqing01 已提交
95 96 97 98 99 100
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
W
wangxinxin08 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm

Q
qingqing01 已提交
115 116 117 118
        return samples


@register_op
W
wangxinxin08 已提交
119
class BatchRandomResize(BaseOperator):
Q
qingqing01 已提交
120
    """
W
wangxinxin08 已提交
121
    Resize image to target size randomly. random target_size and interpolation method
Q
qingqing01 已提交
122
    Args:
W
wangxinxin08 已提交
123 124 125 126 127
        target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
        keep_ratio (bool): whether keep_raio or not, default true
        interp (int): the interpolation method
        random_size (bool): whether random select target size of image
        random_interp (bool): whether random select interpolation method
Q
qingqing01 已提交
128 129
    """

W
wangxinxin08 已提交
130 131 132 133 134 135 136 137
    def __init__(self,
                 target_size,
                 keep_ratio,
                 interp=cv2.INTER_NEAREST,
                 random_size=True,
                 random_interp=False):
        super(BatchRandomResize, self).__init__()
        self.keep_ratio = keep_ratio
Q
qingqing01 已提交
138 139 140 141 142 143
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
W
wangxinxin08 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
        ]
        self.interp = interp
        assert isinstance(target_size, (
            int, Sequence)), "target_size must be int, list or tuple"
        if random_size and not isinstance(target_size, list):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. Must be List, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        self.random_size = random_size
        self.random_interp = random_interp

    def __call__(self, samples, context=None):
        if self.random_size:
158 159
            index = np.random.choice(len(self.target_size))
            target_size = self.target_size[index]
W
wangxinxin08 已提交
160 161 162 163 164 165 166 167 168 169
        else:
            target_size = self.target_size

        if self.random_interp:
            interp = np.random.choice(self.interps)
        else:
            interp = self.interp

        resizer = Resize(target_size, keep_ratio=self.keep_ratio, interp=interp)
        return resizer(samples, context=context)
Q
qingqing01 已提交
170 171 172 173


@register_op
class Gt2YoloTarget(BaseOperator):
174
    __shared__ = ['num_classes']
Q
qingqing01 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    """
    Generate YOLOv3 targets by groud truth data, this operator is only used in
    fine grained YOLOv3 loss mode
    """

    def __init__(self,
                 anchors,
                 anchor_masks,
                 downsample_ratios,
                 num_classes=80,
                 iou_thresh=1.):
        super(Gt2YoloTarget, self).__init__()
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        self.downsample_ratios = downsample_ratios
        self.num_classes = num_classes
        self.iou_thresh = iou_thresh

W
wangxinxin08 已提交
193
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
194 195 196 197 198 199 200 201
        assert len(self.anchor_masks) == len(self.downsample_ratios), \
            "anchor_masks', and 'downsample_ratios' should have same length."

        h, w = samples[0]['image'].shape[1:3]
        an_hw = np.array(self.anchors) / np.array([[w, h]])
        for sample in samples:
            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']
W
wangxinxin08 已提交
202 203 204
            if 'gt_score' not in sample:
                sample['gt_score'] = np.ones(
                    (gt_bbox.shape[0], 1), dtype=np.float32)
Q
qingqing01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
            gt_score = sample['gt_score']
            for i, (
                    mask, downsample_ratio
            ) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
                grid_h = int(h / downsample_ratio)
                grid_w = int(w / downsample_ratio)
                target = np.zeros(
                    (len(mask), 6 + self.num_classes, grid_h, grid_w),
                    dtype=np.float32)
                for b in range(gt_bbox.shape[0]):
                    gx, gy, gw, gh = gt_bbox[b, :]
                    cls = gt_class[b]
                    score = gt_score[b]
                    if gw <= 0. or gh <= 0. or score <= 0.:
                        continue

                    # find best match anchor index
                    best_iou = 0.
                    best_idx = -1
                    for an_idx in range(an_hw.shape[0]):
                        iou = jaccard_overlap(
                            [0., 0., gw, gh],
                            [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
                        if iou > best_iou:
                            best_iou = iou
                            best_idx = an_idx

                    gi = int(gx * grid_w)
                    gj = int(gy * grid_h)

                    # gtbox should be regresed in this layes if best match 
                    # anchor index in anchor mask of this layer
                    if best_idx in mask:
                        best_n = mask.index(best_idx)

                        # x, y, w, h, scale
                        target[best_n, 0, gj, gi] = gx * grid_w - gi
                        target[best_n, 1, gj, gi] = gy * grid_h - gj
                        target[best_n, 2, gj, gi] = np.log(
                            gw * w / self.anchors[best_idx][0])
                        target[best_n, 3, gj, gi] = np.log(
                            gh * h / self.anchors[best_idx][1])
                        target[best_n, 4, gj, gi] = 2.0 - gw * gh

                        # objectness record gt_score
                        target[best_n, 5, gj, gi] = score

                        # classification
                        target[best_n, 6 + cls, gj, gi] = 1.

                    # For non-matched anchors, calculate the target if the iou 
                    # between anchor and gt is larger than iou_thresh
                    if self.iou_thresh < 1:
                        for idx, mask_i in enumerate(mask):
                            if mask_i == best_idx: continue
                            iou = jaccard_overlap(
                                [0., 0., gw, gh],
                                [0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
W
wangxinxin08 已提交
263 264
                            if iou > self.iou_thresh and target[idx, 5, gj,
                                                                gi] == 0.:
Q
qingqing01 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                                # x, y, w, h, scale
                                target[idx, 0, gj, gi] = gx * grid_w - gi
                                target[idx, 1, gj, gi] = gy * grid_h - gj
                                target[idx, 2, gj, gi] = np.log(
                                    gw * w / self.anchors[mask_i][0])
                                target[idx, 3, gj, gi] = np.log(
                                    gh * h / self.anchors[mask_i][1])
                                target[idx, 4, gj, gi] = 2.0 - gw * gh

                                # objectness record gt_score
                                target[idx, 5, gj, gi] = score

                                # classification
                                target[idx, 6 + cls, gj, gi] = 1.
                sample['target{}'.format(i)] = target
W
wangxinxin08 已提交
280 281 282 283 284

            # remove useless gt_class and gt_score after target calculated
            sample.pop('gt_class')
            sample.pop('gt_score')

Q
qingqing01 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297
        return samples


@register_op
class Gt2FCOSTarget(BaseOperator):
    """
    Generate FCOS targets by groud truth data
    """

    def __init__(self,
                 object_sizes_boundary,
                 center_sampling_radius,
                 downsample_ratios,
298 299 300
                 num_shift=0.5,
                 multiply_strides_reg_targets=False,
                 norm_reg_targets=True):
Q
qingqing01 已提交
301 302 303 304 305 306 307 308 309 310 311
        super(Gt2FCOSTarget, self).__init__()
        self.center_sampling_radius = center_sampling_radius
        self.downsample_ratios = downsample_ratios
        self.INF = np.inf
        self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
        object_sizes_of_interest = []
        for i in range(len(self.object_sizes_boundary) - 1):
            object_sizes_of_interest.append([
                self.object_sizes_boundary[i], self.object_sizes_boundary[i + 1]
            ])
        self.object_sizes_of_interest = object_sizes_of_interest
312 313
        self.num_shift = num_shift
        self.multiply_strides_reg_targets = multiply_strides_reg_targets
Q
qingqing01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        self.norm_reg_targets = norm_reg_targets

    def _compute_points(self, w, h):
        """
        compute the corresponding points in each feature map
        :param h: image height
        :param w: image width
        :return: points from all feature map
        """
        locations = []
        for stride in self.downsample_ratios:
            shift_x = np.arange(0, w, stride).astype(np.float32)
            shift_y = np.arange(0, h, stride).astype(np.float32)
            shift_x, shift_y = np.meshgrid(shift_x, shift_y)
            shift_x = shift_x.flatten()
            shift_y = shift_y.flatten()
330 331
            location = np.stack(
                [shift_x, shift_y], axis=1) + stride * self.num_shift
Q
qingqing01 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            locations.append(location)
        num_points_each_level = [len(location) for location in locations]
        locations = np.concatenate(locations, axis=0)
        return locations, num_points_each_level

    def _convert_xywh2xyxy(self, gt_bbox, w, h):
        """
        convert the bounding box from style xywh to xyxy
        :param gt_bbox: bounding boxes normalized into [0, 1]
        :param w: image width
        :param h: image height
        :return: bounding boxes in xyxy style
        """
        bboxes = gt_bbox.copy()
        bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
        bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
        bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
        bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
        return bboxes

    def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
                                    num_points_each_level):
        """
        check if points is within the clipped boxes
        :param gt_bbox: bounding boxes
        :param xs: horizontal coordinate of points
        :param ys: vertical coordinate of points
        :return: the mask of points is within gt_box or not
        """
        bboxes = np.reshape(
            gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
        bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
        ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
        ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
        beg = 0
        clipped_box = bboxes.copy()
        for lvl, stride in enumerate(self.downsample_ratios):
            end = beg + num_points_each_level[lvl]
            stride_exp = self.center_sampling_radius * stride
            clipped_box[beg:end, :, 0] = np.maximum(
                bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 1] = np.maximum(
                bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 2] = np.minimum(
                bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
            clipped_box[beg:end, :, 3] = np.minimum(
                bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
            beg = end
        l_res = xs - clipped_box[:, :, 0]
        r_res = clipped_box[:, :, 2] - xs
        t_res = ys - clipped_box[:, :, 1]
        b_res = clipped_box[:, :, 3] - ys
        clipped_box_reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
        inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
        return inside_gt_box

W
wangxinxin08 已提交
388
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
389 390 391 392 393 394 395 396
        assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
            "object_sizes_of_interest', and 'downsample_ratios' should have same length."

        for sample in samples:
            im = sample['image']
            bboxes = sample['gt_bbox']
            gt_class = sample['gt_class']
            # calculate the locations
W
wangxinxin08 已提交
397
            h, w = im.shape[1:3]
Q
qingqing01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            points, num_points_each_level = self._compute_points(w, h)
            object_scale_exp = []
            for i, num_pts in enumerate(num_points_each_level):
                object_scale_exp.append(
                    np.tile(
                        np.array([self.object_sizes_of_interest[i]]),
                        reps=[num_pts, 1]))
            object_scale_exp = np.concatenate(object_scale_exp, axis=0)

            gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
                bboxes[:, 3] - bboxes[:, 1])
            xs, ys = points[:, 0], points[:, 1]
            xs = np.reshape(xs, newshape=[xs.shape[0], 1])
            xs = np.tile(xs, reps=[1, bboxes.shape[0]])
            ys = np.reshape(ys, newshape=[ys.shape[0], 1])
            ys = np.tile(ys, reps=[1, bboxes.shape[0]])

            l_res = xs - bboxes[:, 0]
            r_res = bboxes[:, 2] - xs
            t_res = ys - bboxes[:, 1]
            b_res = bboxes[:, 3] - ys
            reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
            if self.center_sampling_radius > 0:
                is_inside_box = self._check_inside_boxes_limited(
                    bboxes, xs, ys, num_points_each_level)
            else:
                is_inside_box = np.min(reg_targets, axis=2) > 0
            # check if the targets is inside the corresponding level
            max_reg_targets = np.max(reg_targets, axis=2)
            lower_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 0], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            high_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 1], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            is_match_current_level = \
                (max_reg_targets > lower_bound) & \
                (max_reg_targets < high_bound)
            points2gtarea = np.tile(
                np.expand_dims(
                    gt_area, axis=0), reps=[xs.shape[0], 1])
            points2gtarea[is_inside_box == 0] = self.INF
            points2gtarea[is_match_current_level == 0] = self.INF
            points2min_area = points2gtarea.min(axis=1)
            points2min_area_ind = points2gtarea.argmin(axis=1)
            labels = gt_class[points2min_area_ind] + 1
            labels[points2min_area == self.INF] = 0
            reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
            ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
                                  reg_targets[:, [0, 2]].max(axis=1)) * \
                                  (reg_targets[:, [1, 3]].min(axis=1) / \
                                   reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
            ctn_targets = np.reshape(
                ctn_targets, newshape=[ctn_targets.shape[0], 1])
            ctn_targets[labels <= 0] = 0
            pos_ind = np.nonzero(labels != 0)
            reg_targets_pos = reg_targets[pos_ind[0], :]
            split_sections = []
            beg = 0
            for lvl in range(len(num_points_each_level)):
                end = beg + num_points_each_level[lvl]
                split_sections.append(end)
                beg = end
            labels_by_level = np.split(labels, split_sections, axis=0)
            reg_targets_by_level = np.split(reg_targets, split_sections, axis=0)
            ctn_targets_by_level = np.split(ctn_targets, split_sections, axis=0)
            for lvl in range(len(self.downsample_ratios)):
                grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
                grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
                if self.norm_reg_targets:
470 471 472
                    if self.multiply_strides_reg_targets:
                        sample['reg_target{}'.format(lvl)] = np.reshape(
                            reg_targets_by_level[lvl],
Q
qingqing01 已提交
473
                            newshape=[grid_h, grid_w, 4])
474 475 476 477 478 479
                    else:
                        sample['reg_target{}'.format(lvl)] = \
                            np.reshape(
                                reg_targets_by_level[lvl] / \
                                self.downsample_ratios[lvl],
                                newshape=[grid_h, grid_w, 4])
Q
qingqing01 已提交
480 481 482 483 484 485 486 487
                else:
                    sample['reg_target{}'.format(lvl)] = np.reshape(
                        reg_targets_by_level[lvl],
                        newshape=[grid_h, grid_w, 4])
                sample['labels{}'.format(lvl)] = np.reshape(
                    labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
                sample['centerness{}'.format(lvl)] = np.reshape(
                    ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
F
Feng Ni 已提交
488

489 490 491 492
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
Q
qingqing01 已提交
493 494 495
        return samples


G
Guanghua Yu 已提交
496 497
@register_op
class Gt2GFLTarget(BaseOperator):
498
    __shared__ = ['num_classes']
G
Guanghua Yu 已提交
499 500 501 502 503 504 505 506
    """
    Generate GFocal loss targets by groud truth data
    """

    def __init__(self,
                 num_classes=80,
                 downsample_ratios=[8, 16, 32, 64, 128],
                 grid_cell_scale=4,
507 508
                 cell_offset=0,
                 compute_vlr_region=False):
G
Guanghua Yu 已提交
509 510 511 512 513
        super(Gt2GFLTarget, self).__init__()
        self.num_classes = num_classes
        self.downsample_ratios = downsample_ratios
        self.grid_cell_scale = grid_cell_scale
        self.cell_offset = cell_offset
514
        self.compute_vlr_region = compute_vlr_region
G
Guanghua Yu 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

        self.assigner = ATSSAssigner()

    def get_grid_cells(self, featmap_size, scale, stride, offset=0):
        """
        Generate grid cells of a feature map for target assignment.
        Args:
            featmap_size: Size of a single level feature map.
            scale: Grid cell scale.
            stride: Down sample stride of the feature map.
            offset: Offset of grid cells.
        return:
            Grid_cells xyxy position. Size should be [feat_w * feat_h, 4]
        """
        cell_size = stride * scale
        h, w = featmap_size
        x_range = (np.arange(w, dtype=np.float32) + offset) * stride
        y_range = (np.arange(h, dtype=np.float32) + offset) * stride
        x, y = np.meshgrid(x_range, y_range)
        y = y.flatten()
        x = x.flatten()
        grid_cells = np.stack(
            [
                x - 0.5 * cell_size, y - 0.5 * cell_size, x + 0.5 * cell_size,
                y + 0.5 * cell_size
            ],
            axis=-1)
        return grid_cells

    def get_sample(self, assign_gt_inds, gt_bboxes):
        pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0])
        neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0])
        pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1

        if gt_bboxes.size == 0:
            # hack for index error case
            assert pos_assigned_gt_inds.size == 0
            pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4)
        else:
            if len(gt_bboxes.shape) < 2:
                gt_bboxes = gt_bboxes.resize(-1, 4)
            pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :]
        return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds

    def __call__(self, samples, context=None):
        assert len(samples) > 0
        batch_size = len(samples)
        # get grid cells of image
        h, w = samples[0]['image'].shape[1:3]
        multi_level_grid_cells = []
        for stride in self.downsample_ratios:
            featmap_size = (int(math.ceil(h / stride)),
                            int(math.ceil(w / stride)))
            multi_level_grid_cells.append(
                self.get_grid_cells(featmap_size, self.grid_cell_scale, stride,
                                    self.cell_offset))
        mlvl_grid_cells_list = [
            multi_level_grid_cells for i in range(batch_size)
        ]
        # pixel cell number of multi-level feature maps
        num_level_cells = [
            grid_cells.shape[0] for grid_cells in mlvl_grid_cells_list[0]
        ]
        num_level_cells_list = [num_level_cells] * batch_size
        # concat all level cells and to a single array
        for i in range(batch_size):
            mlvl_grid_cells_list[i] = np.concatenate(mlvl_grid_cells_list[i])
        # target assign on all images
        for sample, grid_cells, num_level_cells in zip(
                samples, mlvl_grid_cells_list, num_level_cells_list):
            gt_bboxes = sample['gt_bbox']
            gt_labels = sample['gt_class'].squeeze()
            if gt_labels.size == 1:
                gt_labels = np.array([gt_labels]).astype(np.int32)
            gt_bboxes_ignore = None
            assign_gt_inds, _ = self.assigner(grid_cells, num_level_cells,
                                              gt_bboxes, gt_bboxes_ignore,
                                              gt_labels)
593

594 595 596 597 598
            if self.compute_vlr_region:
                vlr_region = self.assigner.get_vlr_region(
                    grid_cells, num_level_cells, gt_bboxes, gt_bboxes_ignore,
                    gt_labels)
                sample['vlr_regions'] = vlr_region
599

G
Guanghua Yu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
            pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds = self.get_sample(
                assign_gt_inds, gt_bboxes)

            num_cells = grid_cells.shape[0]
            bbox_targets = np.zeros_like(grid_cells)
            bbox_weights = np.zeros_like(grid_cells)
            labels = np.ones([num_cells], dtype=np.int64) * self.num_classes
            label_weights = np.zeros([num_cells], dtype=np.float32)

            if len(pos_inds) > 0:
                pos_bbox_targets = pos_gt_bboxes
                bbox_targets[pos_inds, :] = pos_bbox_targets
                bbox_weights[pos_inds, :] = 1.0
                if not np.any(gt_labels):
                    labels[pos_inds] = 0
                else:
                    labels[pos_inds] = gt_labels[pos_assigned_gt_inds]

                label_weights[pos_inds] = 1.0
            if len(neg_inds) > 0:
                label_weights[neg_inds] = 1.0
            sample['grid_cells'] = grid_cells
            sample['labels'] = labels
            sample['label_weights'] = label_weights
            sample['bbox_targets'] = bbox_targets
            sample['pos_num'] = max(pos_inds.size, 1)
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
            sample.pop('gt_score', None)
        return samples


Q
qingqing01 已提交
634 635
@register_op
class Gt2TTFTarget(BaseOperator):
W
wangxinxin08 已提交
636
    __shared__ = ['num_classes']
Q
qingqing01 已提交
637 638 639 640 641 642 643 644 645 646 647
    """
    Gt2TTFTarget
    Generate TTFNet targets by ground truth data
    
    Args:
        num_classes(int): the number of classes.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        alpha(float): the alpha parameter to generate gaussian target.
            0.54 by default.
    """

W
wangxinxin08 已提交
648
    def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
Q
qingqing01 已提交
649 650 651 652 653
        super(Gt2TTFTarget, self).__init__()
        self.down_ratio = down_ratio
        self.num_classes = num_classes
        self.alpha = alpha

W
wangxinxin08 已提交
654
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        output_size = samples[0]['image'].shape[1]
        feat_size = output_size // self.down_ratio
        for sample in samples:
            heatmap = np.zeros(
                (self.num_classes, feat_size, feat_size), dtype='float32')
            box_target = np.ones(
                (4, feat_size, feat_size), dtype='float32') * -1
            reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')

            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']

            bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
            bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
            area = bbox_w * bbox_h
            boxes_areas_log = np.log(area)
            boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
            boxes_area_topk_log = boxes_areas_log[boxes_ind]
            gt_bbox = gt_bbox[boxes_ind]
            gt_class = gt_class[boxes_ind]

            feat_gt_bbox = gt_bbox / self.down_ratio
            feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
            feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
                                feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])

            ct_inds = np.stack(
                [(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
                 (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
                axis=1) / self.down_ratio

            h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
            w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')

            for k in range(len(gt_bbox)):
                cls_id = gt_class[k]
                fake_heatmap = np.zeros((feat_size, feat_size), dtype='float32')
                self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
                                            h_radiuses_alpha[k],
                                            w_radiuses_alpha[k])

                heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
                box_target_inds = fake_heatmap > 0
                box_target[:, box_target_inds] = gt_bbox[k][:, None]

                local_heatmap = fake_heatmap[box_target_inds]
                ct_div = np.sum(local_heatmap)
                local_heatmap *= boxes_area_topk_log[k]
                reg_weight[0, box_target_inds] = local_heatmap / ct_div
            sample['ttf_heatmap'] = heatmap
            sample['ttf_box_target'] = box_target
            sample['ttf_reg_weight'] = reg_weight
707 708 709 710 711
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
            sample.pop('gt_score', None)
Q
qingqing01 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
        return samples

    def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
        h, w = 2 * h_radius + 1, 2 * w_radius + 1
        sigma_x = w / 6
        sigma_y = h / 6
        gaussian = gaussian2D((h, w), sigma_x, sigma_y)

        x, y = int(center[0]), int(center[1])

        height, width = heatmap.shape[0:2]

        left, right = min(x, w_radius), min(width - x, w_radius + 1)
        top, bottom = min(y, h_radius), min(height - y, h_radius + 1)

        masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
        masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
                                   left:w_radius + right]
        if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
            heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
                masked_heatmap, masked_gaussian)
        return heatmap
W
wangxinxin08 已提交
734 735 736 737 738


@register_op
class Gt2Solov2Target(BaseOperator):
    """Assign mask target and labels in SOLOv2 network.
G
Guanghua Yu 已提交
739 740
    The code of this function is based on:
        https://github.com/WXinlong/SOLO/blob/master/mmdet/models/anchor_heads/solov2_head.py#L271
W
wangxinxin08 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    Args:
        num_grids (list): The list of feature map grids size.
        scale_ranges (list): The list of mask boundary range.
        coord_sigma (float): The coefficient of coordinate area length.
        sampling_ratio (float): The ratio of down sampling.
    """

    def __init__(self,
                 num_grids=[40, 36, 24, 16, 12],
                 scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
                               [384, 2048]],
                 coord_sigma=0.2,
                 sampling_ratio=4.0):
        super(Gt2Solov2Target, self).__init__()
        self.num_grids = num_grids
        self.scale_ranges = scale_ranges
        self.coord_sigma = coord_sigma
        self.sampling_ratio = sampling_ratio

    def _scale_size(self, im, scale):
        h, w = im.shape[:2]
        new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
        resized_img = cv2.resize(
            im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        return resized_img

    def __call__(self, samples, context=None):
        sample_id = 0
        max_ins_num = [0] * len(self.num_grids)
        for sample in samples:
            gt_bboxes_raw = sample['gt_bbox']
            gt_labels_raw = sample['gt_class'] + 1
            im_c, im_h, im_w = sample['image'].shape[:]
            gt_masks_raw = sample['gt_segm'].astype(np.uint8)
            mask_feat_size = [
                int(im_h / self.sampling_ratio), int(im_w / self.sampling_ratio)
            ]
            gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
                               (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
            ins_ind_label_list = []
            idx = 0
            for (lower_bound, upper_bound), num_grid \
                    in zip(self.scale_ranges, self.num_grids):

                hit_indices = ((gt_areas >= lower_bound) &
                               (gt_areas <= upper_bound)).nonzero()[0]
                num_ins = len(hit_indices)

                ins_label = []
                grid_order = []
                cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
X
xiegegege 已提交
792
                ins_ind_label = np.zeros([num_grid**2], dtype=np.bool_)
W
wangxinxin08 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

                if num_ins == 0:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
                    idx += 1
                    continue
                gt_bboxes = gt_bboxes_raw[hit_indices]
                gt_labels = gt_labels_raw[hit_indices]
                gt_masks = gt_masks_raw[hit_indices, ...]

                half_ws = 0.5 * (
                    gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
                half_hs = 0.5 * (
                    gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma

                for seg_mask, gt_label, half_h, half_w in zip(
                        gt_masks, gt_labels, half_hs, half_ws):
                    if seg_mask.sum() == 0:
                        continue
                    # mass center
                    upsampled_size = (mask_feat_size[0] * 4,
                                      mask_feat_size[1] * 4)
                    center_h, center_w = ndimage.measurements.center_of_mass(
                        seg_mask)
                    coord_w = int(
                        (center_w / upsampled_size[1]) // (1. / num_grid))
                    coord_h = int(
                        (center_h / upsampled_size[0]) // (1. / num_grid))

                    # left, top, right, down
                    top_box = max(0,
                                  int(((center_h - half_h) / upsampled_size[0])
                                      // (1. / num_grid)))
                    down_box = min(num_grid - 1,
                                   int(((center_h + half_h) / upsampled_size[0])
                                       // (1. / num_grid)))
                    left_box = max(0,
                                   int(((center_w - half_w) / upsampled_size[1])
                                       // (1. / num_grid)))
                    right_box = min(num_grid - 1,
                                    int(((center_w + half_w) /
                                         upsampled_size[1]) // (1. / num_grid)))

                    top = max(top_box, coord_h - 1)
                    down = min(down_box, coord_h + 1)
                    left = max(coord_w - 1, left_box)
                    right = min(right_box, coord_w + 1)

                    cate_label[top:(down + 1), left:(right + 1)] = gt_label
                    seg_mask = self._scale_size(
                        seg_mask, scale=1. / self.sampling_ratio)
                    for i in range(top, down + 1):
                        for j in range(left, right + 1):
                            label = int(i * num_grid + j)
                            cur_ins_label = np.zeros(
                                [mask_feat_size[0], mask_feat_size[1]],
                                dtype=np.uint8)
                            cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
                                1]] = seg_mask
                            ins_label.append(cur_ins_label)
                            ins_ind_label[label] = True
                            grid_order.append(sample_id * num_grid * num_grid +
                                              label)
                if ins_label == []:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
                else:
                    ins_label = np.stack(ins_label, axis=0)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        grid_order, dtype=np.int32)
                    assert len(grid_order) > 0
                max_ins_num[idx] = max(
                    max_ins_num[idx],
                    sample['ins_label{}'.format(idx)].shape[0])
                idx += 1
            ins_ind_labels = np.concatenate([
                ins_ind_labels_level_img
                for ins_ind_labels_level_img in ins_ind_label_list
            ])
            fg_num = np.sum(ins_ind_labels)
            sample['fg_num'] = fg_num
            sample_id += 1

            sample.pop('is_crowd')
            sample.pop('gt_class')
            sample.pop('gt_bbox')
            sample.pop('gt_poly')
            sample.pop('gt_segm')

        # padding batch
        for data in samples:
            for idx in range(len(self.num_grids)):
                gt_ins_data = np.zeros(
                    [
                        max_ins_num[idx],
                        data['ins_label{}'.format(idx)].shape[1],
                        data['ins_label{}'.format(idx)].shape[2]
                    ],
                    dtype=np.uint8)
                gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
                    0], :, :] = data['ins_label{}'.format(idx)]
                gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
                gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
                    0]] = data['grid_order{}'.format(idx)]
                data['ins_label{}'.format(idx)] = gt_ins_data
                data['grid_order{}'.format(idx)] = gt_grid_order

        return samples
F
FL77N 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933


@register_op
class Gt2SparseRCNNTarget(BaseOperator):
    '''
    Generate SparseRCNN targets by groud truth data
    '''

    def __init__(self):
        super(Gt2SparseRCNNTarget, self).__init__()

    def __call__(self, samples, context=None):
        for sample in samples:
            im = sample["image"]
            h, w = im.shape[1:3]
            img_whwh = np.array([w, h, w, h], dtype=np.int32)
            sample["img_whwh"] = img_whwh
            if "scale_factor" in sample:
S
shangliang Xu 已提交
934 935 936
                sample["scale_factor_wh"] = np.array(
                    [sample["scale_factor"][1], sample["scale_factor"][0]],
                    dtype=np.float32)
F
FL77N 已提交
937
            else:
S
shangliang Xu 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
                sample["scale_factor_wh"] = np.array(
                    [1.0, 1.0], dtype=np.float32)

        return samples


@register_op
class PadMaskBatch(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
        return_pad_mask (bool): If `return_pad_mask = True`, return
            `pad_mask` for transformer.
    """

    def __init__(self, pad_to_stride=0, return_pad_mask=False):
        super(PadMaskBatch, self).__init__()
        self.pad_to_stride = pad_to_stride
        self.return_pad_mask = return_pad_mask

    def __call__(self, samples, context=None):
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

        max_shape = np.array([data['image'].shape for data in samples]).max(
            axis=0)
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

        for data in samples:
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm
            if self.return_pad_mask:
                padding_mask = np.zeros(
                    (max_shape[1], max_shape[2]), dtype=np.float32)
                padding_mask[:im_h, :im_w] = 1.
                data['pad_mask'] = padding_mask

F
FL77N 已提交
1002
        return samples
W
wangguanzhong 已提交
1003 1004 1005 1006


@register_op
class Gt2CenterNetTarget(BaseOperator):
1007
    __shared__ = ['num_classes']
W
wangguanzhong 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016
    """Gt2CenterNetTarget
    Genterate CenterNet targets by ground-truth
    Args:
        down_ratio (int): The down sample ratio between output feature and 
                          input image.
        num_classes (int): The number of classes, 80 by default.
        max_objs (int): The maximum objects detected, 128 by default.
    """

1017
    def __init__(self, num_classes=80, down_ratio=4, max_objs=128):
W
wangguanzhong 已提交
1018
        super(Gt2CenterNetTarget, self).__init__()
1019
        self.nc = num_classes
W
wangguanzhong 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        self.down_ratio = down_ratio
        self.max_objs = max_objs

    def __call__(self, sample, context=None):
        input_h, input_w = sample['image'].shape[1:]
        output_h = input_h // self.down_ratio
        output_w = input_w // self.down_ratio
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']

1030
        hm = np.zeros((self.nc, output_h, output_w), dtype=np.float32)
W
wangguanzhong 已提交
1031 1032 1033 1034
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.int32)
1035 1036
        cat_spec_wh = np.zeros((self.max_objs, self.nc * 2), dtype=np.float32)
        cat_spec_mask = np.zeros((self.max_objs, self.nc * 2), dtype=np.int32)
W
wangguanzhong 已提交
1037

1038 1039 1040 1041 1042
        trans_output = get_affine_transform(
            center=sample['center'],
            input_size=[sample['scale'], sample['scale']],
            rot=0,
            output_size=[output_w, output_h])
W
wangguanzhong 已提交
1043 1044 1045 1046 1047 1048

        gt_det = []
        for i, (bbox, cls) in enumerate(zip(gt_bbox, gt_class)):
            cls = int(cls)
            bbox[:2] = affine_transform(bbox[:2], trans_output)
            bbox[2:] = affine_transform(bbox[2:], trans_output)
1049
            bbox_amodal = copy.deepcopy(bbox)
W
wangguanzhong 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)), 0.7)
                radius = max(0, int(radius))
                ct = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
                    dtype=np.float32)
                ct_int = ct.astype(np.int32)
1060 1061

                # get hm,wh,reg,ind,ind_mask
W
wangguanzhong 已提交
1062 1063 1064
                draw_umich_gaussian(hm[cls], ct_int, radius)
                wh[i] = 1. * w, 1. * h
                reg[i] = ct - ct_int
1065
                ind[i] = ct_int[1] * output_w + ct_int[0]
W
wangguanzhong 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
                reg_mask[i] = 1
                cat_spec_wh[i, cls * 2:cls * 2 + 2] = wh[i]
                cat_spec_mask[i, cls * 2:cls * 2 + 2] = 1
                gt_det.append([
                    ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2,
                    1, cls
                ])

        sample.pop('gt_bbox', None)
        sample.pop('gt_class', None)
        sample.pop('center', None)
        sample.pop('scale', None)
        sample.pop('is_crowd', None)
        sample.pop('difficult', None)
1080

W
wangguanzhong 已提交
1081
        sample['index'] = ind
1082 1083
        sample['index_mask'] = reg_mask
        sample['heatmap'] = hm
W
wangguanzhong 已提交
1084 1085 1086
        sample['size'] = wh
        sample['offset'] = reg
        return sample
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139


@register_op
class PadGT(BaseOperator):
    """
    Pad 0 to `gt_class`, `gt_bbox`, `gt_score`...
    The num_max_boxes is the largest for batch.
    Args:
        return_gt_mask (bool): If true, return `pad_gt_mask`,
                                1 means bbox, 0 means no bbox.
    """

    def __init__(self, return_gt_mask=True):
        super(PadGT, self).__init__()
        self.return_gt_mask = return_gt_mask

    def __call__(self, samples, context=None):
        num_max_boxes = max([len(s['gt_bbox']) for s in samples])
        for sample in samples:
            if self.return_gt_mask:
                sample['pad_gt_mask'] = np.zeros(
                    (num_max_boxes, 1), dtype=np.float32)
            if num_max_boxes == 0:
                continue

            num_gt = len(sample['gt_bbox'])
            pad_gt_class = np.zeros((num_max_boxes, 1), dtype=np.int32)
            pad_gt_bbox = np.zeros((num_max_boxes, 4), dtype=np.float32)
            if num_gt > 0:
                pad_gt_class[:num_gt] = sample['gt_class']
                pad_gt_bbox[:num_gt] = sample['gt_bbox']
            sample['gt_class'] = pad_gt_class
            sample['gt_bbox'] = pad_gt_bbox
            # pad_gt_mask
            if 'pad_gt_mask' in sample:
                sample['pad_gt_mask'][:num_gt] = 1
            # gt_score
            if 'gt_score' in sample:
                pad_gt_score = np.zeros((num_max_boxes, 1), dtype=np.float32)
                if num_gt > 0:
                    pad_gt_score[:num_gt] = sample['gt_score']
                sample['gt_score'] = pad_gt_score
            if 'is_crowd' in sample:
                pad_is_crowd = np.zeros((num_max_boxes, 1), dtype=np.int32)
                if num_gt > 0:
                    pad_is_crowd[:num_gt] = sample['is_crowd']
                sample['is_crowd'] = pad_is_crowd
            if 'difficult' in sample:
                pad_diff = np.zeros((num_max_boxes, 1), dtype=np.int32)
                if num_gt > 0:
                    pad_diff[:num_gt] = sample['difficult']
                sample['difficult'] = pad_diff
        return samples
W
wangxinxin08 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193


@register_op
class PadRGT(BaseOperator):
    """
    Pad 0 to `gt_class`, `gt_bbox`, `gt_score`...
    The num_max_boxes is the largest for batch.
    Args:
        return_gt_mask (bool): If true, return `pad_gt_mask`,
                                1 means bbox, 0 means no bbox.
    """

    def __init__(self, return_gt_mask=True):
        super(PadRGT, self).__init__()
        self.return_gt_mask = return_gt_mask

    def pad_field(self, sample, field, num_gt):
        name, shape, dtype = field
        if name in sample:
            pad_v = np.zeros(shape, dtype=dtype)
            if num_gt > 0:
                pad_v[:num_gt] = sample[name]
            sample[name] = pad_v

    def __call__(self, samples, context=None):
        num_max_boxes = max([len(s['gt_bbox']) for s in samples])
        for sample in samples:
            if self.return_gt_mask:
                sample['pad_gt_mask'] = np.zeros(
                    (num_max_boxes, 1), dtype=np.float32)
            if num_max_boxes == 0:
                continue

            num_gt = len(sample['gt_bbox'])
            pad_gt_class = np.zeros((num_max_boxes, 1), dtype=np.int32)
            pad_gt_bbox = np.zeros((num_max_boxes, 4), dtype=np.float32)
            if num_gt > 0:
                pad_gt_class[:num_gt] = sample['gt_class']
                pad_gt_bbox[:num_gt] = sample['gt_bbox']
            sample['gt_class'] = pad_gt_class
            sample['gt_bbox'] = pad_gt_bbox
            # pad_gt_mask
            if 'pad_gt_mask' in sample:
                sample['pad_gt_mask'][:num_gt] = 1
            # gt_score
            names = ['gt_score', 'is_crowd', 'difficult', 'gt_poly', 'gt_rbox']
            dims = [1, 1, 1, 8, 5]
            dtypes = [np.float32, np.int32, np.int32, np.float32, np.float32]

            for name, dim, dtype in zip(names, dims, dtypes):
                self.pad_field(sample, [name, (num_max_boxes, dim), dtype],
                               num_gt)

        return samples
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365


@register_op
class Gt2CenterTrackTarget(BaseOperator):
    __shared__ = ['num_classes']
    """Gt2CenterTrackTarget
    Genterate CenterTrack targets by ground-truth
    Args:
        num_classes (int): The number of classes, 1 by default.
        down_ratio (int): The down sample ratio between output feature and 
                          input image.
        max_objs (int): The maximum objects detected, 256 by default.
    """

    def __init__(self,
                 num_classes=1,
                 down_ratio=4,
                 max_objs=256,
                 hm_disturb=0.05,
                 lost_disturb=0.4,
                 fp_disturb=0.1,
                 pre_hm=True,
                 add_tracking=True,
                 add_ltrb_amodal=True):
        super(Gt2CenterTrackTarget, self).__init__()
        self.nc = num_classes
        self.down_ratio = down_ratio
        self.max_objs = max_objs

        self.hm_disturb = hm_disturb
        self.lost_disturb = lost_disturb
        self.fp_disturb = fp_disturb
        self.pre_hm = pre_hm
        self.add_tracking = add_tracking
        self.add_ltrb_amodal = add_ltrb_amodal

    def _get_pre_dets(self, input_h, input_w, trans_input_pre, gt_bbox_pre,
                      gt_class_pre, gt_track_id_pre):
        hm_h, hm_w = input_h, input_w
        reutrn_hm = self.pre_hm
        pre_hm = np.zeros(
            (1, hm_h, hm_w), dtype=np.float32) if reutrn_hm else None
        pre_cts, track_ids = [], []

        for i, (
                bbox, cls, track_id
        ) in enumerate(zip(gt_bbox_pre, gt_class_pre, gt_track_id_pre)):
            cls = int(cls)
            bbox[:2] = affine_transform(bbox[:2], trans_input_pre)
            bbox[2:] = affine_transform(bbox[2:], trans_input_pre)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, hm_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, hm_h - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            max_rad = 1
            if (h > 0 and w > 0):
                radius = gaussian_radius((math.ceil(h), math.ceil(w)), 0.7)
                radius = max(0, int(radius))
                max_rad = max(max_rad, radius)
                ct = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
                    dtype=np.float32)
                ct0 = ct.copy()
                conf = 1

                ct[0] = ct[0] + np.random.randn() * self.hm_disturb * w
                ct[1] = ct[1] + np.random.randn() * self.hm_disturb * h
                conf = 1 if np.random.rand() > self.lost_disturb else 0

                ct_int = ct.astype(np.int32)
                if conf == 0:
                    pre_cts.append(ct / self.down_ratio)
                else:
                    pre_cts.append(ct0 / self.down_ratio)

                track_ids.append(track_id)
                if reutrn_hm:
                    draw_umich_gaussian(pre_hm[0], ct_int, radius, k=conf)

                if np.random.rand() < self.fp_disturb and reutrn_hm:
                    ct2 = ct0.copy()
                    # Hard code heatmap disturb ratio, haven't tried other numbers.
                    ct2[0] = ct2[0] + np.random.randn() * 0.05 * w
                    ct2[1] = ct2[1] + np.random.randn() * 0.05 * h
                    ct2_int = ct2.astype(np.int32)
                    draw_umich_gaussian(pre_hm[0], ct2_int, radius, k=conf)
        return pre_hm, pre_cts, track_ids

    def __call__(self, sample, context=None):
        input_h, input_w = sample['image'].shape[1:]
        output_h = input_h // self.down_ratio
        output_w = input_w // self.down_ratio
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']

        # init
        hm = np.zeros((self.nc, output_h, output_w), dtype=np.float32)
        wh = np.zeros((self.max_objs, 2), dtype=np.float32)
        reg = np.zeros((self.max_objs, 2), dtype=np.float32)
        ind = np.zeros((self.max_objs), dtype=np.int64)
        reg_mask = np.zeros((self.max_objs), dtype=np.int32)
        if self.add_tracking:
            tr = np.zeros((self.max_objs, 2), dtype=np.float32)
        if self.add_ltrb_amodal:
            ltrb_amodal = np.zeros((self.max_objs, 4), dtype=np.float32)

        trans_output = get_affine_transform(
            center=sample['center'],
            input_size=[sample['scale'], sample['scale']],
            rot=0,
            output_size=[output_w, output_h])

        pre_hm, pre_cts, track_ids = self._get_pre_dets(
            input_h, input_w, sample['trans_input'], sample['pre_gt_bbox'],
            sample['pre_gt_class'], sample['pre_gt_track_id'])

        for i, (bbox, cls) in enumerate(zip(gt_bbox, gt_class)):
            cls = int(cls)
            rect = np.array(
                [[bbox[0], bbox[1]], [bbox[0], bbox[3]], [bbox[2], bbox[3]],
                 [bbox[2], bbox[1]]],
                dtype=np.float32)
            for t in range(4):
                rect[t] = affine_transform(rect[t], trans_output)
                bbox[:2] = rect[:, 0].min(), rect[:, 1].min()
                bbox[2:] = rect[:, 0].max(), rect[:, 1].max()

            bbox_amodal = copy.deepcopy(bbox)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1)

            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)), 0.7)
                radius = max(0, int(radius))
                ct = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
                    dtype=np.float32)
                ct_int = ct.astype(np.int32)

                # get hm,wh,reg,ind,ind_mask
                draw_umich_gaussian(hm[cls], ct_int, radius)
                wh[i] = 1. * w, 1. * h
                reg[i] = ct - ct_int
                ind[i] = ct_int[1] * output_w + ct_int[0]
                reg_mask[i] = 1
                if self.add_tracking:
                    if sample['gt_track_id'][i] in track_ids:
                        pre_ct = pre_cts[track_ids.index(sample['gt_track_id'][
                            i])]
                        tr[i] = pre_ct - ct_int

                if self.add_ltrb_amodal:
                    ltrb_amodal[i] = \
                        bbox_amodal[0] - ct_int[0], bbox_amodal[1] - ct_int[1], \
                        bbox_amodal[2] - ct_int[0], bbox_amodal[3] - ct_int[1]

        new_sample = {'image': sample['image']}
        new_sample['index'] = ind
        new_sample['index_mask'] = reg_mask
        new_sample['heatmap'] = hm
        new_sample['size'] = wh
        new_sample['offset'] = reg
        if self.add_tracking:
            new_sample['tracking'] = tr
        if self.add_ltrb_amodal:
            new_sample['ltrb_amodal'] = ltrb_amodal

        new_sample['pre_image'] = sample['pre_image']
        new_sample['pre_hm'] = pre_hm

        del sample
        return new_sample