tensor.py 26.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
M
minqiyang 已提交
23
from ..imperative import base as imperative_base
24
from .layer_function_generator import templatedoc
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
W
whs 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
Z
zhoukunsheng 已提交
48
    'zeros_like',
Y
Yu Yang 已提交
49 50 51
]


X
xuwei06 已提交
52
def create_tensor(dtype, name=None, persistable=False):
53
    """
Q
update  
qiaolongfei 已提交
54
    Create an variable, which will hold a LoDTensor with data type dtype.
55 56

    Args:
Q
update  
qiaolongfei 已提交
57
        dtype(string): 'float32'|'int32'|..., the data type of the
58
            created tensor.
Q
update  
qiaolongfei 已提交
59
        name(string): The name of the created tensor, if not set,
60
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
61
        persistable(bool): Set the persistable flag of the create tensor.
62 63 64 65 66 67 68 69 70

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
71
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
72 73
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
74 75


76 77
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
78
                     name=None,
79 80 81 82
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
83 84 85 86 87 88
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

89 90 91 92 93 94 95 96 97 98 99
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
100 101 102 103 104 105
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
106
    """
Q
Qiao Longfei 已提交
107
    helper = LayerHelper("create_parameter", **locals())
108
    if attr is None:
X
xuwei06 已提交
109
        attr = ParamAttr(name=name)
110 111 112 113
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


114 115 116 117 118 119 120
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
121
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
122

123 124
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
125
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
126 127
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
128
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
129
                           Default: False
M
minqiyang 已提交
130
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
131
                         Default: False
M
minqiyang 已提交
132 133
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
134
                        Default: None
135 136 137

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
138 139 140 141

    Examples:
        .. code-block:: python

M
minqiyang 已提交
142
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
143
                                 persistable=True, force_cpu=True, name='new_var')
144
    """
Q
Qiao Longfei 已提交
145 146
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
147 148 149 150 151
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
152 153 154
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
155

Q
Qiao Longfei 已提交
156 157 158
    return var


159
def cast(x, dtype):
Y
Yu Yang 已提交
160
    """
M
minqiyang 已提交
161
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
162 163
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
164 165 166 167 168 169 170 171 172 173

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
174

Y
Yibing Liu 已提交
175 176
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
177 178
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
179
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


189
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
190
    """
191 192 193
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
194
    and returns that as the output.
195 196 197 198

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
199 200
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
201 202 203 204 205 206

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
207

F
fengjiayi 已提交
208
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
209 210
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
211
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
212 213 214 215 216 217 218 219
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
220 221 222 223 224 225
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
226

L
li099 已提交
227
    .. code-block:: text
M
minqiyang 已提交
228

L
li099 已提交
229 230 231 232 233 234 235 236
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
237

L
li099 已提交
238
        axis = 1
M
minqiyang 已提交
239

L
li099 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
262
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
263 264 265
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
266
        type='tensor_array_to_tensor',
L
li099 已提交
267 268 269 270 271 272 273
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


274
def sums(input, out=None):
F
fengjiayi 已提交
275 276
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
277 278 279 280 281
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
282
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
283
                             Default: None
K
kavyasrinet 已提交
284 285

    Returns:
F
fengjiayi 已提交
286
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
287 288

    Examples:
F
fengjiayi 已提交
289
        .. code-block:: python
K
kavyasrinet 已提交
290 291 292 293 294 295

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
296 297
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
298
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
299 300 301
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
302 303
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
304 305 306 307 308
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
309 310 311
    return out


F
fengjiayi 已提交
312
def assign(input, output=None):
313 314 315 316 317 318
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
319
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
320
        output(Variable|None): The destination variable
321 322 323 324 325 326

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
327

328 329 330 331
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
332
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
333
    if output is None:
X
Xin Pan 已提交
334
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
335 336
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
337
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
338 339
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
340
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
341
            value_name = "fp32_values"
342
            values = [float(v) for v in input.flat]
343
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
344
            value_name = "int32_values"
345
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
346 347
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
348 349 350
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
351 352 353 354 355 356 357

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
358
                value_name: values
X
xuwei06 已提交
359 360 361 362
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
363 364 365
    return output


Q
QI JUN 已提交
366
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
367
    """
368 369
    **fill_constant**

370 371
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
372

373
    The attribute `stop_gradient` of the created tensor is set to True.
374 375

    Args:
376
        shape(tuple|list|None): Shape of the output tensor.
377
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
378 379
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
380
        force_cpu(True|False): data should be on CPU if set true.
381 382

    Returns:
383
        Variable: The tensor variable storing the output.
384 385 386 387 388

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
389
    """
390

Y
Yu Yang 已提交
391 392
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
393
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
394 395 396 397
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
398 399 400 401
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
402
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
403 404
        },
        stop_gradient=True)
Y
Yu Yang 已提交
405 406 407 408
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
409
@templatedoc()
Y
Yu Yang 已提交
410 411 412 413 414
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
415
                                  output_dim_idx=0):
416
    """
Y
yuyang18 已提交
417
    ${comment}
418 419 420 421

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
422
        input(${input_type}): ${input_comment}.
423

Y
yuyang18 已提交
424
        shape(${shape_type}): ${shape_comment}.
425

Y
yuyang18 已提交
426 427 428
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
429

Y
yuyang18 已提交
430 431 432 433 434
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
435
        ${out_comment}.
H
haowang101779990 已提交
436 437 438 439 440 441 442 443

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

444
    """
Y
Yu Yang 已提交
445
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
446
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
462 463 464 465
def argmin(x, axis=0):
    """
    **argmin**

466
    This function computes the indices of the min elements
S
sneaxiy 已提交
467 468 469 470 471 472
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
473

S
sneaxiy 已提交
474 475
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
476

S
sneaxiy 已提交
477 478
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
479

S
sneaxiy 已提交
480
          out = fluid.layers.argmin(x=in, axis=0)
481
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
482 483
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
484
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
485 486 487 488 489 490 491 492 493 494 495 496
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

497
    This function computes the indices of the max elements
S
sneaxiy 已提交
498 499 500 501 502 503
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
504

S
sneaxiy 已提交
505 506
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
507

S
sneaxiy 已提交
508 509
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
510

S
sneaxiy 已提交
511
          out = fluid.layers.argmax(x=in, axis=0)
512
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
513 514
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
515
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
516 517 518 519 520 521 522 523
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


524
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
525
    """
M
minqiyang 已提交
526 527
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
528 529 530
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
531

Y
Yibing Liu 已提交
532 533 534 535 536 537 538 539 540 541 542 543
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
544
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
545 546 547 548
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
549 550
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
551
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
552
        name(str|None): (optional) A name for this layer. If set None, the
553
                   layer will be named automatically.
Y
Yibing Liu 已提交
554 555 556 557 558 559 560 561 562 563 564

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
565 566 567 568
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
569 570 571 572
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
573 574
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
575 576 577
    return out, ids


Y
Yang Yu 已提交
578
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
579
    """
580 581 582 583 584 585 586 587
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
588
        shape(tuple|list): Shape of output tensor
589
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
590 591 592 593 594 595 596 597

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
598
    """
C
chengduozh 已提交
599 600 601 602
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
603 604 605
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
606
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
607
    """
608 609 610 611 612 613 614 615
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
616 617 618
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
619 620

    Returns:
W
wanghaoshuang 已提交
621
        Variable: The tensor variable storing the output.
622 623 624 625 626

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
627 628
    """
    return fill_constant(value=0.0, **locals())
629 630


F
fengjiayi 已提交
631 632 633 634 635 636 637 638
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
639 640 641
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
656
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
657 658
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
659
        inputs={'X': x},
F
fengjiayi 已提交
660 661 662 663 664
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


665 666 667 668 669 670 671
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
672 673 674
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
690 691
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
692
        file_path(str): The file path where variables will be saved.
693
        overwrite(bool): Whether or not cover the given file when it has already
694 695
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
735 736 737 738 739 740 741 742 743 744 745 746 747


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
748
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
764
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
781
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
782 783
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    args:
        start(int|float|Variable): Start of interval. The interval includes this value.
        end(int|float|Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. 
        step(int|float|Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
                                  The default step size is 1.
        dtype(string): 'float32'|'int32'|..., the data type of the output tensor.

    returns:
        Evenly spaced values within a given interval.

    examples:

        .. code-block:: python

             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849


def zeros_like(x, out=None):
    """
    **zeros_like**

    This function creates a zeros tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
        Variable: The tensor variable storing the output.

    Examples:
        .. code-block:: python

Z
zhoukunsheng 已提交
850 851 852
          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
853 854 855 856 857 858 859 860 861
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out