device_context.cc 14.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

Q
qijun 已提交
24 25 26
namespace paddle {
namespace platform {

D
dzhwinter 已提交
27 28
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
29
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
30 31 32 33 34 35
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
36
  return it->second.get().get();
D
dzhwinter 已提交
37 38
}

39 40 41 42 43 44 45 46 47 48 49
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
50 51
}

D
dzhwinter 已提交
52 53 54
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
55
  std::set<Place> set;
Y
Yu Yang 已提交
56 57 58 59 60 61
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
62
#ifdef PADDLE_WITH_MKLDNN
63
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
64
#else
65
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
66
#endif
Y
Yu Yang 已提交
67
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
68
#ifdef PADDLE_WITH_CUDA
69
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
77 78
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
79 80 81 82
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
83 84 85 86 87
#endif
    }
  }
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;

#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place, const cudaStream_t& stream) {
  PADDLE_ENFORCE(platform::is_gpu_place(place));
  auto place_stream = std::make_pair(place, stream);
  {
    std::unique_lock<std::mutex> lock(mtx_);
    if (!device_allocator_.count(place_stream)) {
      device_allocator_[place_stream].reset(new TemporaryAllocator(place));
      device_allocator_[place_stream]->SetCallback([stream]() {
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
        PADDLE_ENFORCE(cudaGetLastError());
      });
    }
  }
  return *device_allocator_.at(place_stream);
}

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CUDADeviceContext& dev_ctx) {
  auto place_stream = std::make_pair(dev_ctx.GetPlace(), dev_ctx.stream());
  if (device_allocator_.count(place_stream)) {
    return *device_allocator_.at(place_stream);
  }
  return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CPUDeviceContext& dev_ctx) {
  return cpu_allocator_;
}

platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
  return cpu_allocator_;
}

131 132 133 134
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
135
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
136 137 138 139 140 141 142
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
143
Place CPUDeviceContext::GetPlace() const { return place_; }
144

145
#ifdef PADDLE_WITH_CUDA
146

Q
init  
qijun 已提交
147 148 149 150 151 152 153
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
154
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
167 168 169
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
Y
Yu Yang 已提交
170 171
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
172
    void* retv = buf->ptr();
S
sneaxiy 已提交
173 174 175 176
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
177
    return retv;
Q
init  
qijun 已提交
178 179
  }

S
sneaxiy 已提交
180 181 182 183 184 185
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
206
  CUDAPlace place_;
Q
init  
qijun 已提交
207 208
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
209
  mutable void* scratch_;
Q
init  
qijun 已提交
210
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
211
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
212
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
213 214
};

S
sneaxiy 已提交
215
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
216
    : workspace_(nullptr), stream_(stream), place_(place) {
S
sneaxiy 已提交
217 218 219
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
220

S
sneaxiy 已提交
221 222
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
223
}
224

S
sneaxiy 已提交
225
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
226
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
227
    return;
Y
Yu Yang 已提交
228
  }
S
sneaxiy 已提交
229 230 231
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
232
    workspace_.reset();
233
  }
Y
Yu Yang 已提交
234 235
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
236
}
237 238 239

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
240
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
241 242 243
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
244 245 246
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
247
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
Z
Zeng Jinle 已提交
248 249
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
250
  if (dynload::HasCUDNN()) {
251
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
252
  }
S
sneaxiy 已提交
253

C
chengduo 已提交
254 255 256
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

257 258
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
259
                          << ", Driver API Version: " << driver_version_ / 1000
260
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
261 262 263
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
264 265 266 267
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

  {
    // Check CUDA/CUDNN version compatiblity
    auto local_cuda_version = runtime_version_ / 100;
    auto compile_cuda_version = CUDA_VERSION / 100;
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
288
      if (local_cudnn_version < compile_cudnn_version) {
S
sneaxiy 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
302
  callback_manager_.reset(new StreamCallbackManager(stream_));
303 304 305 306
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
307
  Wait();
S
sneaxiy 已提交
308
  WaitStreamCallback();
Z
Zeng Jinle 已提交
309
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
310 311
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
312
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
313 314
}

L
liaogang 已提交
315
Place CUDADeviceContext::GetPlace() const { return place_; }
316

L
liaogang 已提交
317
void CUDADeviceContext::Wait() const {
318 319 320 321 322 323
  auto& allocator =
      DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
  allocator.Release([=]() {
    PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
    PADDLE_ENFORCE(cudaGetLastError());
  });
324 325
}

K
Kexin Zhao 已提交
326
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
327
  return compute_capability_;
K
Kexin Zhao 已提交
328 329
}

330
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
331
  return multi_process_ * max_threads_per_mp_;
332 333
}

334 335 336 337
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Z
Zeng Jinle 已提交
338 339
cublasHandle_t CUDADeviceContext::cublas_handle() const {
  return cublas_handle_;
S
sneaxiy 已提交
340 341
}

342 343 344 345
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
346 347
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
348
}
349

350
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
351

C
chengduoZH 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
366
#endif
Q
qijun 已提交
367

T
tensor-tang 已提交
368 369
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
370 371 372
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
373 374
}

S
Sylwester Fraczek 已提交
375 376 377 378 379 380 381 382
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

383 384
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
385 386 387 388
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
389

390
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
391

392 393 394 395 396 397 398
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
399
  } else {
400
    pBlob = map_it->second;
401
  }
T
tensor-tang 已提交
402

403 404 405 406 407 408 409 410 411 412
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
413
  return;
T
tensor-tang 已提交
414 415
}

416 417
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
418 419
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
420

421
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
422

423 424 425 426 427 428 429 430 431 432 433
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
434

435 436
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
437 438 439 440
}

#endif

Q
qijun 已提交
441
}  // namespace platform
Q
qijun 已提交
442
}  // namespace paddle