stacked_dynamic_lstm.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time
import tensorflow as tf


def parse_args():
    parser = argparse.ArgumentParser("LSTM model benchmark.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=32,
        help='The sequence number of a batch data. (default: %(default)d)')
    parser.add_argument(
        '--stacked_num',
        type=int,
        default=5,
        help='Number of lstm layers to stack. (default: %(default)d)')
    parser.add_argument(
        '--embedding_dim',
        type=int,
        default=512,
        help='Dimension of embedding table. (default: %(default)d)')
    parser.add_argument(
        '--hidden_dim',
        type=int,
        default=512,
        help='Hidden size of lstm unit. (default: %(default)d)')
    parser.add_argument(
        '--pass_num',
        type=int,
        default=10,
        help='Epoch number to train. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=0.0002,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    args = parser.parse_args()
    return args


def print_arguments(args):
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def dynamic_lstm_model(dict_size,
                       embedding_dim,
                       hidden_dim,
                       stacked_num,
                       class_num=2,
                       is_train=True):
    word_idx = tf.placeholder(tf.int64, shape=[None, None])
    sequence_length = tf.placeholder(tf.int64, shape=[None, ])

    embedding_weights = tf.get_variable('word_embeddings',
                                        [dict_size, embedding_dim])
    embedding = tf.nn.embedding_lookup(embedding_weights, word_idx)

    lstm_cell = tf.nn.rnn_cell.LSTMCell(
        num_units=hidden_dim, use_peepholes=False)
    stacked_cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * stacked_num)

    # final_state [LSTMTuple(c, h), LSTMTuple(c, h) ...] total stacked_num LSTMTuples
    _, final_state = tf.nn.dynamic_rnn(
        cell=stacked_cell,
        inputs=embedding,
        dtype=tf.float32,
        sequence_length=sequence_length)

    w = tf.Variable(
        tf.truncated_normal([hidden_dim, class_num]), dtype=tf.float32)
    bias = tf.Variable(
        tf.constant(
            value=0.0, shape=[class_num], dtype=tf.float32))
    prediction = tf.matmul(final_state[-1][1], w) + bias

    if not is_train:
        return (word_idx, sequence_length), tf.nn.softmax(prediction)

    label = tf.placeholder(tf.int64, shape=[None, ])
    loss = tf.nn.softmax_cross_entropy_with_logits(
        labels=tf.one_hot(label, 2), logits=prediction)
    avg_loss = tf.reduce_mean(loss)

    correct_count = tf.equal(tf.argmax(prediction, 1), label)
    acc = tf.reduce_mean(tf.cast(correct_count, tf.float32))

    with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
        g_acc = tf.metrics.accuracy(label, tf.argmax(prediction, axis=1))
        vars = tf.contrib.framework.get_variables(
            scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
        reset_op = tf.variables_initializer(vars)

    return (word_idx, sequence_length, label), avg_loss, acc, g_acc, reset_op


def padding_data(data, padding_size, value):
    data = data + [value] * padding_size
    return data[:padding_size]


def train(args):
    word_dict = paddle.dataset.imdb.word_dict()
    dict_size = len(word_dict)

    feeding_list, avg_loss, acc, g_acc, reset_op = dynamic_lstm_model(
        dict_size, args.embedding_dim, args.hidden_dim, args.stacked_num)

    adam_optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
    train_op = adam_optimizer.minimize(avg_loss)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=args.batch_size)

    test_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.test(word_dict), buf_size=25000),
        batch_size=args.batch_size)

    def do_validation(sess):
        sess.run(reset_op)
        for batch_id, data in enumerate(test_reader()):
            word_idx = map(lambda x: x[0], data)
            sequence_length = np.array(
                [len(seq) for seq in word_idx]).astype('int64')
            maxlen = np.max(sequence_length)
            word_idx = [padding_data(seq, maxlen, 0) for seq in word_idx]
            word_idx = np.array(word_idx).astype('int64')
            label = np.array(map(lambda x: x[1], data)).astype('int64')

            _, loss, fetch_acc, fetch_g_acc = sess.run(
                [train_op, avg_loss, acc, g_acc],
                feed_dict={
                    feeding_list[0]: word_idx,
                    feeding_list[1]: sequence_length,
                    feeding_list[2]: label
                })

        return fetch_g_acc[1]

    config = tf.ConfigProto(
        intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        init_g = tf.global_variables_initializer()
        init_l = tf.local_variables_initializer()
        sess.run(init_l)
        sess.run(init_g)

        for pass_id in xrange(args.pass_num):
            # clear accuracy local variable 
            sess.run(reset_op)
            pass_start_time = time.time()
            words_seen = 0

            for batch_id, data in enumerate(train_reader()):
                word_idx = map(lambda x: x[0], data)
                sequence_length = np.array(
                    [len(seq) for seq in word_idx]).astype('int64')
                words_seen += np.sum(sequence_length)
                maxlen = np.max(sequence_length)
                word_idx = [padding_data(seq, maxlen, 0) for seq in word_idx]
                word_idx = np.array(word_idx).astype('int64')
                label = np.array(map(lambda x: x[1], data)).astype('int64')

                _, loss, fetch_acc, fetch_g_acc = sess.run(
                    [train_op, avg_loss, acc, g_acc],
                    feed_dict={
                        feeding_list[0]: word_idx,
                        feeding_list[1]: sequence_length,
                        feeding_list[2]: label
                    })

                print("pass_id=%d, batch_id=%d, loss: %f, acc: %f, avg_acc: %f"
                      % (pass_id, batch_id, loss, fetch_acc, fetch_g_acc[1]))

            pass_end_time = time.time()
            time_consumed = pass_end_time - pass_start_time
            words_per_sec = words_seen / time_consumed
            test_acc = do_validation(sess)
            print("pass_id=%d, test_acc: %f, words/s: %f, sec/pass: %f" %
                  (pass_id, test_acc, words_per_sec, time_consumed))


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)

    if args.infer_only:
        pass
    else:
        train(args)