Layer.cpp 12.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

L
Luo Tao 已提交
17 18
#include "CostLayer.h"
#include "ValidationLayer.h"
19
#include "paddle/math/SparseMatrix.h"
Y
Yu Yang 已提交
20
#include "paddle/utils/Error.h"
Y
Yu Yang 已提交
21
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
22

23
DEFINE_bool(log_error_clipping, false, "enable log error clipping or not");
Z
zhangjinchao01 已提交
24 25 26 27 28 29

namespace paddle {

Layer::Layer(const LayerConfig& config, bool useGpu)
    : config_(config),
      useGpu_(useGpu),
T
tensor-tang 已提交
30
      deviceId_(CPU_DEVICE),
Z
zhangjinchao01 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      needSequenceInfo_(true) {}

bool Layer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  output_.deviceId = deviceId_;

  for (auto& inputConfig : config_.inputs()) {
    std::string inputName = inputConfig.input_layer_name();
    LayerPtr inputLayer;
    CHECK(mapGet(inputName, layerMap, &inputLayer))
        << "Cannot find input layer " << inputName << " for layer "
        << getName();
    this->addPrev(inputLayer);

    inputLayer->addOutputArgument(deviceId_);

    if (inputConfig.has_input_parameter_name()) {
      ParameterPtr parameter;
      CHECK(
          mapGet(inputConfig.input_parameter_name(), parameterMap, &parameter))
          << "Cannot find input parameter "
          << inputConfig.input_parameter_name() << " for layer " << getName();
      parameter->incShared();
      CHECK_EQ(parameter->getDeviceId(), getDeviceId());
      parameters_.push_back(parameter);
    } else {
      parameters_.push_back(nullptr);
    }

    if (inputConfig.has_input_layer_argument()) {
      inputArgument_.push_back(inputConfig.input_layer_argument());
    } else {
      inputArgument_.push_back("");
    }
  }

  if (config_.has_bias_parameter_name()) {
    CHECK(mapGet(config_.bias_parameter_name(), parameterMap, &biasParameter_))
        << "Cannot find bias parameter " << config_.bias_parameter_name()
        << " for layer " << getName();
    biasParameter_->incShared();
    CHECK_EQ(biasParameter_->getDeviceId(), getDeviceId());
  }

  /* specify the activation function according to the configuration */
  std::string action_type = config_.active_type();
  activation_.reset(ActivationFunction::create(action_type));
  CHECK(activation_);

  initNeedFlags();
  markInBackward_.assign(inputLayers_.size(), false);

  return true;
}

ClassRegistrar<Layer, LayerConfig> Layer::registrar_;

LayerPtr Layer::create(const LayerConfig& config) {
  std::string type = config.type();
L
Luo Tao 已提交
97 98 99 100 101 102 103 104 105

  // NOTE: As following types have illegal character '-',
  // they can not use REGISTER_LAYER to registrar.
  // Besides, to fit with old training models,
  // they can not use '_' instead.
  if (type == "multi-class-cross-entropy")
    return LayerPtr(new MultiClassCrossEntropy(config));
  else if (type == "rank-cost")
    return LayerPtr(new RankingCost(config));
106
#ifndef PADDLE_MOBILE_INFERENCE
L
Luo Tao 已提交
107 108 109 110
  else if (type == "auc-validation")
    return LayerPtr(new AucValidation(config));
  else if (type == "pnpair-validation")
    return LayerPtr(new PnpairValidation(config));
111
#endif
L
Luo Tao 已提交
112

Z
zhangjinchao01 已提交
113 114 115
  return LayerPtr(registrar_.createByType(config.type(), config));
}

116 117 118 119 120
void Layer::resetSpecifyOutput(Argument& output,
                               size_t height,
                               size_t width,
                               bool isValueClean,
                               bool isGradClean) {
Z
zhangjinchao01 已提交
121 122
  SetDevice device(output.deviceId);

123 124
  Matrix::resizeOrCreate(
      output.value, height, width, /* trans */ false, useGpu(output.deviceId));
Z
zhangjinchao01 已提交
125 126 127 128 129
  if (isValueClean) {
    output.value->zeroMem();
  }

  if (passType_ != PASS_TEST && needGradient()) {
130 131
    Matrix::resizeOrCreate(
        output.grad, height, width, /* trans */ false, useGpu(output.deviceId));
Z
zhangjinchao01 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    if (isGradClean) {
      output.grad->zeroMem();
    }
  }
}

void Layer::resizeOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, false, false);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, false, false);
  }
}

void Layer::reserveOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, false, true);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, false, true);
  }
}

void Layer::resetOutput(size_t height, size_t width) {
  resetSpecifyOutput(output_, height, width, true, true);

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    resetSpecifyOutput(outputOtherDevice_[i], height, width, true, true);
  }
}

void Layer::addOutputArgument(int deviceId) {
  if (deviceId == deviceId_) {
    output_.countIncrement();
    return;
  } else {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == deviceId) {
        outputOtherDevice_[i].countIncrement();
        return;
      }
    }
  }

  Argument argu;
  argu.deviceId = deviceId;
  outputOtherDevice_.push_back(argu);
  outputOtherDevice_.back().countIncrement();
}

void Layer::copyOutputToOtherDevice() {
  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    SetDevice device(outputOtherDevice_[i].deviceId);
184 185 186 187 188
    // If outputOtherDevice_[i].value is a CpuMatrix,
    // the copyFrom is a synchronous interface.
    // If outputOtherDevice_[i].value is a GpuMatrix, since subsequent
    // calculations are all on HPPL_STREAM_DEFAULT,
    // copyFrom can be an asynchronous interface.
Z
zhangjinchao01 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    outputOtherDevice_[i].value->copyFrom(*getOutputValue(),
                                          HPPL_STREAM_DEFAULT);
    outputOtherDevice_[i].sequenceStartPositions =
        output_.sequenceStartPositions;
    outputOtherDevice_[i].subSequenceStartPositions =
        output_.subSequenceStartPositions;
    outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;

    outputOtherDevice_[i].notifyValueReady();
  }
}

void Layer::waitInputValue() {
  for (size_t i = 0; i != inputLayers_.size(); i++) {
    if (inputLayers_[i]->getDeviceId() != deviceId_) {
      getInput(i).waitValueReady();
    }
  }
}

void Layer::waitAndMergeOutputGrad() {
  if (!output_.grad || !outputOtherDevice_.size()) {
    return;
  }

  for (size_t i = 0; i != outputOtherDevice_.size(); i++) {
    outputOtherDevice_[i].waitGradReady();
  }

  /* merge output grad */
  size_t i = 0;
  if (!output_.getAllCount()) {
    output_.grad->copyFrom(*outputOtherDevice_[0].grad, HPPL_STREAM_1);
    hl_stream_synchronize(HPPL_STREAM_1);

    i++;
    if (outputOtherDevice_.size() == 1) return;
  }

228 229 230 231
  Matrix::resizeOrCreate(tmpGrad_,
                         output_.grad->getHeight(),
                         output_.grad->getWidth(),
                         /* trans */ false,
Z
zhangjinchao01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
                         useGpu(output_.deviceId));

  for (; i != outputOtherDevice_.size(); i++) {
    tmpGrad_->copyFrom(*outputOtherDevice_[i].grad, HPPL_STREAM_1);
    hl_stream_synchronize(HPPL_STREAM_1);
    output_.grad->add(*tmpGrad_);
  }
}

void Layer::markAllInputGrad() {
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    if (!markInBackward_[i]) {
      inputLayers_[i]->getOutput(deviceId_).notifyGradReady();
    }
    markInBackward_[i] = false;
  }
}

void Layer::markInputGrad(int inputIndex) {
  inputLayers_[inputIndex]->getOutput(deviceId_).notifyGradReady();
  markInBackward_[inputIndex] = true;
}

void Layer::zeroGrad() {
  CHECK(output_.grad.get() != NULL);
  output_.grad->zeroMem();
}

void Layer::initNeedFlags() {
261 262
  auto initFlag = [this](
      bool& flag, bool (Layer::*flagQueryFunc)() const, ParameterType type) {
Z
zhangjinchao01 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    flag = false;
    if (biasParameter_ && biasParameter_->hasType(type)) {
      flag = true;
    }
    if (!flag) {
      for (auto& para : parameters_) {
        if (para && para->hasType(type)) {
          flag = true;
          break;
        }
      }
    }
    if (!flag) {
      for (auto& layer : inputLayers_) {
        if ((layer.get()->*flagQueryFunc)()) {
          flag = true;
        }
      }
    }
  };
  initFlag(needGradient_, &Layer::needGradient, PARAMETER_GRADIENT);
}

void Layer::showOutputStats() {
  MatrixPtr out = getOutputValue();
  if (!out) return;
  if (!out->getElementCnt()) {
    LOG(INFO) << "The number of output of " << config_.name()
              << " is 0, skip to show the statistics";
    return;
  }
294 295
  MatrixPtr outSquare;
  if (dynamic_cast<GpuSparseMatrix*>(out.get())) {
296 297 298 299 300 301
    GpuSparseMatrix* tmp = dynamic_cast<GpuSparseMatrix*>(out.get());
    outSquare = std::make_shared<CpuSparseMatrix>(tmp->getHeight(),
                                                  tmp->getWidth(),
                                                  tmp->getElementCnt(),
                                                  tmp->getValueType(),
                                                  tmp->getFormat());
302 303 304 305 306 307 308 309 310
  } else {
    outSquare = out->clone();
  }
  outSquare->copyFrom(*out, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);

  real mean = outSquare->getSum() / out->getElementCnt();
  real min;
  real max;
Z
zhangjinchao01 已提交
311 312
  if (dynamic_cast<CpuSparseMatrix*>(outSquare.get())) {
    auto tmpMat = dynamic_cast<CpuSparseMatrix*>(outSquare.get());
313 314
    min = tmpMat->getMin();
    max = tmpMat->getMax();
H
hedaoyuan 已提交
315
    tmpMat->square2();
Z
zhangjinchao01 已提交
316 317
    LOG(INFO) << "show statistics of [none zero values] in sparse matrix";
  } else {
318 319
    min = outSquare->getMin();
    max = outSquare->getMax();
H
hedaoyuan 已提交
320
    outSquare->square2();
Z
zhangjinchao01 已提交
321 322 323 324 325
  }
  real std = (outSquare->getSum() / outSquare->getElementCnt()) - mean * mean;
  std = std > 0 ? std : 0;
  LOG(INFO) << "The output state of " << config_.name() << ": mean=" << mean
            << ", "
326
            << "std=" << std << ", "
327 328
            << "min=" << min << ", "
            << "max=" << max;
Z
zhangjinchao01 已提交
329 330 331 332
}

void Layer::forwardActivation() {
  /* activation */
333
  auto status = activation_->forward(output_);
334
  status.check();
Z
zhangjinchao01 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

  /* dropout */
  if (config_.drop_rate() > 0) {
    forwardDropOut();
    CHECK_NE(activation_->getName(), "softmax")
        << "Softmax activation cannot be used with Dropout";
  }

  if (FLAGS_show_layer_stat) {
    showOutputStats();
  }
}

void Layer::backwardActivation() {
  /* Do error clipping */
  if (config_.error_clipping_threshold() > 0.0f) {
    if (FLAGS_log_error_clipping) {
L
lianxiaochen 已提交
352 353 354
      VectorPtr outGradVec = Vector::create(
          output_.grad->getData(), output_.grad->getElementCnt(), useGpu_);
      real maxAbsGrad = outGradVec->getAbsMax();
Z
zhangjinchao01 已提交
355
      if (maxAbsGrad > config_.error_clipping_threshold()) {
L
lianxiaochen 已提交
356
        real avgAbsGrad = outGradVec->getAbsSum() / outGradVec->getSize();
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370
        LOG(INFO) << " layer=" << config_.name() << " need clipping,"
                  << " max error=" << maxAbsGrad << " avg error=" << avgAbsGrad;
      }
    }
    output_.grad->clip(-config_.error_clipping_threshold(),
                       config_.error_clipping_threshold());
  }

  /* Do dropout for delta*/
  if (config_.drop_rate() > 0 && passType_ != PASS_TEST) {
    MatrixPtr oGrad = getOutputGrad();
    oGrad->dotMul(*oGrad, *dropOutMask_);
  }

371
  auto status = activation_->backward(output_);
372
  status.check();
Z
zhangjinchao01 已提交
373 374 375 376 377
}

void Layer::forwardDropOut() {
  auto& outV = getOutputValue();

378
  if (passType_ == PASS_TRAIN) {
Z
zhangjinchao01 已提交
379
    // new dropOutMask_ if dropOutMask_ is null ptr
380 381 382 383 384
    Matrix::resizeOrCreate(dropOutMask_,
                           outV->getHeight(),
                           outV->getWidth(),
                           false,
                           useGpu(deviceId_));
Z
zhangjinchao01 已提交
385 386 387 388 389 390
    dropOutMask_->randomizeUniform();  // generate a uniform random matrix
    dropOutMask_->biggerThanScalar(config_.drop_rate());  // random mask
    outV->dotMul(*outV, *dropOutMask_);                   // dropout
  } else if (passType_ == PASS_GC) {
    // only initialize once
    if (!dropOutMask_) {
391 392
      dropOutMask_ = Matrix::create(
          outV->getHeight(), outV->getWidth(), false, useGpu(deviceId_));
Z
zhangjinchao01 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
      // We use cpu matrix to generate mask so that the mask
      // will be same for both gpu version and cpu version.
      // This will help unittest to make sure they have same result.
      MatrixPtr tmpMask = Matrix::create(outV->getHeight(), outV->getWidth());
      tmpMask->randomizeUniform();  // generate a uniform random matrix
      tmpMask->biggerThanScalar(config_.drop_rate());  // random mask
      dropOutMask_->copyFrom(*tmpMask);
    }
    outV->dotMul(*outV, *dropOutMask_);
  } else {  // passType == PASS_TEST
    outV->mulScalar(1.0 - config_.drop_rate());
  }
}

}  // namespace paddle