legacy_allocator.cc 9.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/legacy_allocator.h"
M
minqiyang 已提交
16

Y
Yu Yang 已提交
17
#include <string>
18
#include <vector>
M
minqiyang 已提交
19

20
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
21 22 23
#include <jemalloc/jemalloc.h>
#endif

Y
Yu Yang 已提交
24 25 26 27 28
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/string/printf.h"
29
#include "paddle/fluid/string/split.h"
Y
Yu Yang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

DEFINE_bool(init_allocated_mem, false,
            "It is a mistake that the values of the memory allocated by "
            "BuddyAllocator are always zeroed in some op's implementation. "
            "To find this error in time, we use init_allocated_mem to indicate "
            "that initializing the allocated memory with a small value "
            "during unit testing.");
DECLARE_double(fraction_of_gpu_memory_to_use);

namespace paddle {
namespace memory {
namespace legacy {
template <typename Place>
void *Alloc(const Place &place, size_t size);

template <typename Place>
void Free(const Place &place, void *p);

template <typename Place>
size_t Used(const Place &place);

struct Usage : public boost::static_visitor<size_t> {
  size_t operator()(const platform::CPUPlace &cpu) const;
  size_t operator()(const platform::CUDAPlace &gpu) const;
  size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const;
};

size_t memory_usage(const platform::Place &p);

using BuddyAllocator = detail::BuddyAllocator;

BuddyAllocator *GetCPUBuddyAllocator() {
  // We tried thread_local for inference::RNN1 model, but that not works much
  // for multi-thread test.
  static std::once_flag init_flag;
  static detail::BuddyAllocator *a = nullptr;

  std::call_once(init_flag, []() {
    a = new detail::BuddyAllocator(
        std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
        platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
  });

  return a;
}

// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct NaiveAllocator {
  void *Alloc(size_t size) { return malloc(size); }

  void Free(void *p) {
    PADDLE_ENFORCE(p);
    free(p);
  }

  static NaiveAllocator *Instance() {
    static NaiveAllocator x;
    return &x;
  }

 private:
  std::mutex lock_;
};

template <>
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
G
gongweibao 已提交
97
  VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
98
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
99 100
  void *p = malloc(size);
#else
Y
Yu Yang 已提交
101
  void *p = GetCPUBuddyAllocator()->Alloc(size);
M
minqiyang 已提交
102
#endif
Y
Yu Yang 已提交
103 104 105
  if (FLAGS_init_allocated_mem) {
    memset(p, 0xEF, size);
  }
M
minqiyang 已提交
106
  VLOG(10) << "  pointer=" << p;
Y
Yu Yang 已提交
107 108 109 110 111
  return p;
}

template <>
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p) {
G
gongweibao 已提交
112
  VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
113
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
114 115
  free(p);
#else
Y
Yu Yang 已提交
116
  GetCPUBuddyAllocator()->Free(p);
M
minqiyang 已提交
117
#endif
Y
Yu Yang 已提交
118 119 120 121
}

template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
122 123
#ifdef PADDLE_WITH_JEMALLOC
  // fake the result of used memory when PADDLE_WITH_JEMALLOC is ON
M
minqiyang 已提交
124 125
  return 0U;
#else
Y
Yu Yang 已提交
126
  return GetCPUBuddyAllocator()->Used();
M
minqiyang 已提交
127
#endif
Y
Yu Yang 已提交
128 129 130 131 132 133
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
  static std::once_flag init_flag;
  static detail::BuddyAllocator **a_arr = nullptr;
134
  static std::vector<int> devices;
Y
Yu Yang 已提交
135 136

  std::call_once(init_flag, [gpu_id]() {
137 138
    devices = platform::GetSelectedDevices();
    int gpu_num = devices.size();
Y
Yu Yang 已提交
139 140

    a_arr = new BuddyAllocator *[gpu_num];
141 142
    for (size_t i = 0; i < devices.size(); ++i) {
      int dev_id = devices[i];
Y
Yu Yang 已提交
143
      a_arr[i] = nullptr;
144 145 146 147 148
      platform::SetDeviceId(dev_id);
      a_arr[i] = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                        new detail::GPUAllocator(dev_id)),
                                    platform::GpuMinChunkSize(),
                                    platform::GpuMaxChunkSize());
Y
Yu Yang 已提交
149

M
minqiyang 已提交
150 151 152 153 154 155
      VLOG(10) << "\n\nNOTE: each GPU device use "
               << FLAGS_fraction_of_gpu_memory_to_use * 100
               << "% of GPU memory.\n"
               << "You can set GFlags environment variable '"
               << "FLAGS_fraction_of_gpu_memory_to_use"
               << "' to change the fraction of GPU usage.\n\n";
Y
Yu Yang 已提交
156 157 158 159
    }
  });

  platform::SetDeviceId(gpu_id);
160 161 162
  auto pos = std::distance(devices.begin(),
                           std::find(devices.begin(), devices.end(), gpu_id));
  return a_arr[pos];
Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
}
#endif

template <>
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetGPUBuddyAllocator(place.device)->Used();
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
                                 size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetGPUBuddyAllocator(place.device);
  auto *ptr = buddy_allocator->Alloc(size);
  if (ptr == nullptr) {
    int cur_dev = platform::GetCurrentDeviceId();
    platform::SetDeviceId(place.device);
    size_t avail, total;
    platform::GpuMemoryUsage(&avail, &total);
    LOG(WARNING) << "Cannot allocate " << string::HumanReadableSize(size)
                 << " in GPU " << place.device << ", available "
                 << string::HumanReadableSize(avail);
    LOG(WARNING) << "total " << total;
    LOG(WARNING) << "GpuMinChunkSize "
                 << string::HumanReadableSize(
                        buddy_allocator->GetMinChunkSize());
    LOG(WARNING) << "GpuMaxChunkSize "
                 << string::HumanReadableSize(
                        buddy_allocator->GetMaxChunkSize());
    LOG(WARNING) << "GPU memory used: "
                 << string::HumanReadableSize(Used<platform::CUDAPlace>(place));
    platform::SetDeviceId(cur_dev);
  }
  if (FLAGS_init_allocated_mem) {
    cudaMemset(ptr, 0xEF, size);
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p) {
#ifdef PADDLE_WITH_CUDA
  GetGPUBuddyAllocator(place.device)->Free(p);
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetCUDAPinnedBuddyAllocator() {
  static std::once_flag init_flag;
  static BuddyAllocator *ba = nullptr;

  std::call_once(init_flag, []() {
    ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                new detail::CUDAPinnedAllocator),
                            platform::CUDAPinnedMinChunkSize(),
                            platform::CUDAPinnedMaxChunkSize());
  });

  return ba;
}
#endif

template <>
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetCUDAPinnedBuddyAllocator()->Used();
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
                                       size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetCUDAPinnedBuddyAllocator();
  void *ptr = buddy_allocator->Alloc(size);

  if (ptr == nullptr) {
    LOG(WARNING) << "cudaMallocHost Cannot allocate " << size
                 << " bytes in CUDAPinnedPlace";
  }
  if (FLAGS_init_allocated_mem) {
    memset(ptr, 0xEF, size);
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
                                     void *p) {
#ifdef PADDLE_WITH_CUDA
  GetCUDAPinnedBuddyAllocator()->Free(p);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

struct AllocVisitor : public boost::static_visitor<void *> {
  inline explicit AllocVisitor(size_t size) : size_(size) {}

  template <typename Place>
  inline void *operator()(const Place &place) const {
    return Alloc<Place>(place, size_);
  }

 private:
  size_t size_;
};

struct FreeVisitor : public boost::static_visitor<void> {
  inline explicit FreeVisitor(void *ptr) : ptr_(ptr) {}

  template <typename Place>
  inline void operator()(const Place &place) const {
    Free<Place>(place, ptr_);
  }

 private:
  void *ptr_;
};

size_t Usage::operator()(const platform::CPUPlace &cpu) const {
  return Used(cpu);
}

size_t Usage::operator()(const platform::CUDAPlace &gpu) const {
#ifdef PADDLE_WITH_CUDA
  return Used(gpu);
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
#ifdef PADDLE_WITH_CUDA
  return Used(cuda_pinned);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
}  // namespace legacy

namespace allocation {

Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
  void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
  return new Allocation(ptr, size, place_);
}

void LegacyAllocator::Free(Allocation *allocation) {
  boost::apply_visitor(legacy::FreeVisitor(allocation->ptr()),
                       allocation->place());
  delete allocation;
}
}  // namespace allocation
}  // namespace memory
}  // namespace paddle