ttf_fpn.py 5.0 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from ppdet.modeling.layers import DeformableConvV2
import math
from ppdet.modeling.ops import batch_norm
26 27 28
from ..shape_spec import ShapeSpec

__all__ = ['TTFFPN']
F
Feng Ni 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


class Upsample(nn.Layer):
    def __init__(self, ch_in, ch_out, name=None):
        super(Upsample, self).__init__()
        fan_in = ch_in * 3 * 3
        stdv = 1. / math.sqrt(fan_in)
        self.dcn = DeformableConvV2(
            ch_in,
            ch_out,
            kernel_size=3,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
            bias_attr=ParamAttr(
                initializer=Constant(0),
                regularizer=L2Decay(0.),
                learning_rate=2.),
            lr_scale=2.,
W
wangxinxin08 已提交
46
            regularizer=L2Decay(0.))
F
Feng Ni 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

        self.bn = batch_norm(
            ch_out, norm_type='bn', initializer=Constant(1.), name=name)

    def forward(self, feat):
        dcn = self.dcn(feat)
        bn = self.bn(dcn)
        relu = F.relu(bn)
        out = F.interpolate(relu, scale_factor=2., mode='bilinear')
        return out


class ShortCut(nn.Layer):
    def __init__(self, layer_num, ch_out, name=None):
        super(ShortCut, self).__init__()
F
Feng Ni 已提交
62
        shortcut_conv = nn.Sequential()
F
Feng Ni 已提交
63 64 65 66 67 68 69 70
        ch_in = ch_out * 2
        for i in range(layer_num):
            fan_out = 3 * 3 * ch_out
            std = math.sqrt(2. / fan_out)
            in_channels = ch_in if i == 0 else ch_out
            shortcut_name = name + '.conv.{}'.format(i)
            shortcut_conv.add_sublayer(
                shortcut_name,
F
Feng Ni 已提交
71
                nn.Conv2D(
F
Feng Ni 已提交
72 73 74 75 76 77 78 79
                    in_channels=in_channels,
                    out_channels=ch_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0, std)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            if i < layer_num - 1:
F
Feng Ni 已提交
80
                shortcut_conv.add_sublayer(shortcut_name + '.act', nn.ReLU())
F
Feng Ni 已提交
81 82 83 84 85 86 87 88 89 90
        self.shortcut = self.add_sublayer('short', shortcut_conv)

    def forward(self, feat):
        out = self.shortcut(feat)
        return out


@register
@serializable
class TTFFPN(nn.Layer):
91 92 93 94 95 96 97 98 99 100
    """
    Args:
        in_channels (list): number of input feature channels from backbone.
            [128,256,512,1024] by default, means the channels of DarkNet53
            backbone return_idx [1,2,3,4].
        shortcut_num (list): the number of convolution layers in each shortcut.
            [3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs
            in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv.
    """

F
Feng Ni 已提交
101
    def __init__(self,
102 103
                 in_channels=[128, 256, 512, 1024],
                 shortcut_num=[3, 2, 1]):
F
Feng Ni 已提交
104
        super(TTFFPN, self).__init__()
105 106
        self.planes = [c // 2 for c in in_channels[:-1]][::-1]
        self.shortcut_num = shortcut_num[::-1]
F
Feng Ni 已提交
107
        self.shortcut_len = len(shortcut_num)
108 109
        self.ch_in = in_channels[::-1]

F
Feng Ni 已提交
110 111 112
        self.upsample_list = []
        self.shortcut_list = []
        for i, out_c in enumerate(self.planes):
113
            in_c = self.ch_in[i] if i == 0 else self.ch_in[i] // 2
F
Feng Ni 已提交
114 115 116
            upsample = self.add_sublayer(
                'upsample.' + str(i),
                Upsample(
117
                    in_c, out_c, name='upsample.' + str(i)))
F
Feng Ni 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            self.upsample_list.append(upsample)
            if i < self.shortcut_len:
                shortcut = self.add_sublayer(
                    'shortcut.' + str(i),
                    ShortCut(
                        self.shortcut_num[i], out_c, name='shortcut.' + str(i)))
                self.shortcut_list.append(shortcut)

    def forward(self, inputs):
        feat = inputs[-1]
        for i, out_c in enumerate(self.planes):
            feat = self.upsample_list[i](feat)
            if i < self.shortcut_len:
                shortcut = self.shortcut_list[i](inputs[-i - 2])
                feat = feat + shortcut
        return feat
134 135 136 137 138 139 140 141

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=self.planes[-1], )]