README_cn.md 20.2 KB
Newer Older
W
wangguanzhong 已提交
1 2
简体中文 | [English](README_en.md)

Y
YixinKristy 已提交
3 4
<div align="center">
<p align="center">
5
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
Y
YixinKristy 已提交
6
</p>
W
wangguanzhong 已提交
7

Y
YixinKristy 已提交
8
**飞桨目标检测开发套件,端到端地完成从训练到部署的全流程目标检测应用。**
W
wangguanzhong 已提交
9

Y
YixinKristy 已提交
10 11 12 13 14 15 16
<p align="center">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleDetection?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleDetection?color=ccf"></a>
</p>
17
</div>
18

19
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> 产品动态
Y
YixinKristy 已提交
20

21 22 23 24 25 26 27 28 29 30 31
- 🔥 **2022.7.14:[行人分析工具PP-Human v2](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/pipeline)发布**
  - 四大产业特色功能:高性能易扩展的五大复杂行为识别、闪电级人体属性识别、一行代码即可实现的人流检测与轨迹留存以及高精度跨镜跟踪
  - 底层核心算法性能强劲:覆盖行人检测、跟踪、属性三类核心算法能力,对目标人数、光线、背景均无限制
  - 极低使用门槛:提供保姆级全流程开发及模型优化策略、一行命令完成推理、兼容各类数据输入格式

**活动预告** 7月19日晚20点,PaddleDetection举办PP-Human v2线上私享交流会,欢迎大家扫码进群,获取线上会议链接!名额有限,抓紧报名!
<div  align="center">
  <img src="https://user-images.githubusercontent.com/22989727/178771163-66639dc0-cb65-4413-8de4-6ac5c5eed9f5.jpg" width="200"/>
</div>

- 2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)
Z
zz952332446 已提交
32

33
  - 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),发布s/m/l/x版本,l版本COCO test2017数据集精度51.6%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。
34
  - 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。
Y
YixinKristy 已提交
35
  - 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。
36
  - 新增[YOLOX](configs/yolox)目标检测模型,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%。
Y
YixinKristy 已提交
37

Y
YixinKristy 已提交
38
- 2021.11.03: PaddleDetection发布[release/2.3版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3)
Z
zz952332446 已提交
39

Y
YixinKristy 已提交
40 41 42 43 44 45
  - 发布轻量级检测特色模型⚡[PP-PicoDet](configs/picodet),0.99m的参数量可实现精度30+mAP、速度150FPS。
  - 发布轻量级关键点特色模型⚡[PP-TinyPose](configs/keypoint/tiny_pose),单人场景FP16推理可达122FPS、51.8AP,具有精度高速度快、检测人数无限制、微小目标效果好的优势。
  - 发布实时跟踪系统[PP-Tracking](deploy/pptracking),覆盖单、多镜头下行人、车辆、多类别跟踪,对小目标、密集型特殊优化,提供人、车流量技术解决方案。
  - 新增[Swin Transformer](configs/faster_rcnn)[TOOD](configs/tood)[GFL](configs/gfl)目标检测模型。
  - 发布[Sniper](configs/sniper)小目标检测优化模型,发布针对EdgeBoard优化[PP-YOLO-EB](configs/ppyolo)模型。
  - 新增轻量化关键点模型[Lite HRNet](configs/keypoint)关键点模型并支持Paddle Lite部署。
Y
YixinKristy 已提交
46

Y
YixinKristy 已提交
47
- 2021.08.10: PaddleDetection发布[release/2.2版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2)
Z
zz952332446 已提交
48

Y
YixinKristy 已提交
49 50 51
  - 发布Transformer检测系列模型,包括[DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn)
  - 新增Dark HRNet关键点模型和MPII数据集[关键点模型](configs/keypoint)
  - 新增[人头](configs/mot/headtracking21)[车辆](configs/mot/vehicle)跟踪垂类模型。
Y
YixinKristy 已提交
52

Y
YixinKristy 已提交
53
- 2021.05.20: PaddleDetection发布[release/2.1版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1)
Z
zz952332446 已提交
54

Y
YixinKristy 已提交
55 56 57 58
  - 新增[关键点检测](configs/keypoint),模型包括HigherHRNet,HRNet。
  - 新增[多目标跟踪](configs/mot)能力,模型包括DeepSORT,JDE,FairMOT。
  - 发布PPYOLO系列模型压缩模型,新增[ONNX模型导出教程](deploy/EXPORT_ONNX_MODEL.md)

59
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> 简介
Y
YixinKristy 已提交
60

61
**PaddleDetection**为基于飞桨PaddlePaddle的端到端目标检测套件,内置**30+模型算法****250+预训练模型**,覆盖**目标检测、实例分割、跟踪、关键点检测**等方向,其中包括**服务器端和移动端高精度、轻量级**产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案,在打通数据处理、模型开发、训练、压缩、部署全流程的基础上,提供丰富的案例及教程,加速算法产业落地应用。
Y
YixinKristy 已提交
62 63

#### 提供目标检测、实例分割、多目标跟踪、关键点检测等多种能力
W
wangguanzhong 已提交
64

65 66
<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
W
wangguanzhong 已提交
67 68
</div>

Y
YixinKristy 已提交
69
#### 应用场景覆盖工业、智慧城市、安防、交通、零售、医疗等十余种行业
W
wangguanzhong 已提交
70

71 72 73
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
</div>
Y
YixinKristy 已提交
74

75
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> 特性
76

77
- **模型丰富**: 包含**目标检测****实例分割****人脸检测******关键点检测******多目标跟踪****250+个预训练模型**,涵盖多种**全球竞赛冠军**方案。
W
wangguanzhong 已提交
78 79 80 81
- **使用简洁**:模块化设计,解耦各个网络组件,开发者轻松搭建、试用各种检测模型及优化策略,快速得到高性能、定制化的算法。
- **端到端打通**: 从数据增强、组网、训练、压缩、部署端到端打通,并完备支持**云端**/**边缘端**多架构、多设备部署。
- **高性能**: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。

82
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> 技术交流
Y
YixinKristy 已提交
83 84

- 如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)给我们提issues。
W
wangguanzhong 已提交
85

Y
YixinKristy 已提交
86
- 欢迎加入PaddleDetection QQ、微信用户群(添加并回复小助手“检测”)
Z
zz952332446 已提交
87

Y
YixinKristy 已提交
88
  <div align="center">
89
  <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg"  width = "200" />  
Z
zz952332446 已提交
90
  <img src="https://user-images.githubusercontent.com/34162360/177678712-4655747d-4290-4ad9-b7a1-4564a5418ac6.jpg"  width = "200" />  
Y
YixinKristy 已提交
91 92
  </div>

93
## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> 套件结构概览
W
wangguanzhong 已提交
94

K
Kaipeng Deng 已提交
95
<table align="center">
W
wangguanzhong 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
113 114
        <ul>
          <li><b>Object Detection</b></li>
W
wangguanzhong 已提交
115 116 117 118 119 120 121 122 123 124
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
            <li>PSS-Det</li>
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
K
Kaipeng Deng 已提交
125 126
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
127 128
            <li>PP-YOLOE</li>
            <li>YOLOX</li>
W
wangguanzhong 已提交
129 130 131 132
            <li>SSD</li>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
K
Kaipeng Deng 已提交
133 134 135 136 137
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
W
wangguanzhong 已提交
138
        </ul>
K
Kaipeng Deng 已提交
139
        <li><b>Instance Segmentation</b></li>
W
wangguanzhong 已提交
140
        <ul>
K
Kaipeng Deng 已提交
141 142
            <li>Mask RCNN</li>
            <li>SOLOv2</li>
W
wangguanzhong 已提交
143
        </ul>
K
Kaipeng Deng 已提交
144
        <li><b>Face Detection</b></li>
K
Kaipeng Deng 已提交
145
        <ul>
K
Kaipeng Deng 已提交
146 147 148
            <li>FaceBoxes</li>
            <li>BlazeFace</li>
            <li>BlazeFace-NAS</li>
K
Kaipeng Deng 已提交
149
        </ul>
K
Kaipeng Deng 已提交
150
        <li><b>Multi-Object-Tracking</b></li>
K
Kaipeng Deng 已提交
151
        <ul>
K
Kaipeng Deng 已提交
152 153
            <li>JDE</li>
            <li>FairMOT</li>
154
            <li>DeepSORT</li>
K
Kaipeng Deng 已提交
155
        </ul>
K
Kaipeng Deng 已提交
156
        <li><b>KeyPoint-Detection</b></li>
K
Kaipeng Deng 已提交
157
        <ul>
K
Kaipeng Deng 已提交
158 159
            <li>HRNet</li>
            <li>HigherHRNet</li>
K
Kaipeng Deng 已提交
160
        </ul>
K
Kaipeng Deng 已提交
161
      </ul>
W
wangguanzhong 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
K
Kaipeng Deng 已提交
179
          <li>BlazeNet</li>  
W
wangguanzhong 已提交
180 181 182 183 184 185 186 187 188 189 190
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
K
Kaipeng Deng 已提交
191 192 193 194 195
        <ul><li><b>KeyPoint</b></li>
          <ul>
            <li>DarkPose</li>
          </ul>  
        </ul>
W
wangguanzhong 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
227
          <li>Lighting</li>  
W
wangguanzhong 已提交
228 229 230 231 232 233
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
234
          <li>AugmentHSV</li>
K
Kaipeng Deng 已提交
235
          <li>Mosaic</li>
W
wangguanzhong 已提交
236 237 238
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
239
          <li>Random Perspective</li>  
W
wangguanzhong 已提交
240 241 242 243 244 245 246 247 248
        </ul>  
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

249
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> 模型性能概览
W
wangguanzhong 已提交
250 251 252 253 254 255 256 257 258 259 260

各模型结构和骨干网络的代表模型在COCO数据集上精度mAP和单卡Tesla V100上预测速度(FPS)对比图。

<div align="center">
  <img src="docs/images/fps_map.png" />
</div>

**说明:**

- `CBResNet``Cascade-Faster-RCNN-CBResNet200vd-FPN`模型,COCO数据集mAP高达53.3%
- `Cascade-Faster-RCNN``Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS
261
- `PP-YOLO`在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)
W
wangguanzhong 已提交
262
- `PP-YOLO v2`是对`PP-YOLO`模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS
263 264
- `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,在COCO数据集精度51.6%,Tesla V100预测速度78.1FPS
- [`YOLOX`](configs/yolox)[`YOLOv5`](https://github.com/nemonameless/PaddleDetection_YOLOv5/tree/main/configs/yolov5)均为基于PaddleDetection复现算法
W
wangguanzhong 已提交
265 266
- 图中模型均可在[模型库](#模型库)中获取

K
Kaipeng Deng 已提交
267 268 269 270 271 272 273
各移动端模型在COCO数据集上精度mAP和高通骁龙865处理器上预测速度(FPS)对比图。

<div align="center">
  <img src="docs/images/mobile_fps_map.png" width=600/>
</div>

**说明:**
Y
YixinKristy 已提交
274

K
Kaipeng Deng 已提交
275 276 277
- 测试数据均使用高通骁龙865(4\*A77 + 4\*A55)处理器batch size为1, 开启4线程测试,测试使用NCNN预测库,测试脚本见[MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- [PP-PicoDet](configs/picodet)[PP-YOLO-Tiny](configs/ppyolo)为PaddleDetection自研模型,其余模型PaddleDetection暂未提供

278
## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/> 文档教程
W
wangguanzhong 已提交
279 280 281 282

### 入门教程

- [安装说明](docs/tutorials/INSTALL_cn.md)
283
- [数据准备](docs/tutorials/PrepareDataSet.md)
284
- [30分钟上手PaddleDetecion](docs/tutorials/GETTING_STARTED_cn.md)
Y
YixinKristy 已提交
285
- [FAQ/常见问题汇总](docs/tutorials/FAQ)
Y
yzl19940819 已提交
286

W
wangguanzhong 已提交
287 288
### 进阶教程

289
- 参数配置
Z
zz952332446 已提交
290

Y
YixinKristy 已提交
291 292 293
  - [RCNN参数说明](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md)
  - [PP-YOLO参数说明](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md)

294
- 模型压缩(基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
Z
zz952332446 已提交
295

Y
YixinKristy 已提交
296
  - [剪裁/量化/蒸馏教程](configs/slim)
297

W
wangguanzhong 已提交
298
- [推理部署](deploy/README.md)
Z
zz952332446 已提交
299

Y
YixinKristy 已提交
300 301 302 303 304 305 306 307 308
  - [模型导出教程](deploy/EXPORT_MODEL.md)
  - [Paddle Inference部署](deploy/README.md)
    - [Python端推理部署](deploy/python)
    - [C++端推理部署](deploy/cpp)
  - [Paddle-Lite部署](deploy/lite)
  - [Paddle Serving部署](deploy/serving)
  - [ONNX模型导出](deploy/EXPORT_ONNX_MODEL.md)
  - [推理benchmark](deploy/BENCHMARK_INFER.md)

309
- 进阶开发
Z
zz952332446 已提交
310

Y
YixinKristy 已提交
311 312 313
  - [数据处理模块](docs/advanced_tutorials/READER.md)
  - [新增检测模型](docs/advanced_tutorials/MODEL_TECHNICAL.md)

Y
YixinKristy 已提交
314 315 316 317 318 319
### 课程专栏

- **2022.4.19 [产业级目标检测技术与应用](https://aistudio.baidu.com/aistudio/education/group/info/23670)三日课:** 超强目标检测算法矩阵、实时行人分析系统PP-Human、目标检测产业应用全流程拆解与实践

- **2022.3.26 [智慧城市行业](https://aistudio.baidu.com/aistudio/education/group/info/25620)七日课:** 城市规划、城市治理、智慧政务、交通管理、社区治理

320
### [产业实践范例教程](./industrial_tutorial/README_cn.md)
Y
YixinKristy 已提交
321

L
lilithzhou 已提交
322 323
- [基于PP-PicoDet增强版的路面垃圾检测](https://aistudio.baidu.com/aistudio/projectdetail/3846170?channelType=0&channel=0)

Y
YixinKristy 已提交
324 325 326 327 328 329 330 331 332 333
- [基于PP-PicoDet的通信塔识别及Android端部署](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [基于Faster-RCNN的瓷砖表面瑕疵检测](https://aistudio.baidu.com/aistudio/projectdetail/2571419)

- [基于PaddleDetection的PCB瑕疵检测](https://aistudio.baidu.com/aistudio/projectdetail/2367089)

- [基于FairMOT实现人流量统计](https://aistudio.baidu.com/aistudio/projectdetail/2421822)

- [基于YOLOv3实现跌倒检测 ](https://aistudio.baidu.com/aistudio/projectdetail/2500639)

334 335 336 337
- [基于PP-PicoDetv2 的路面垃圾检测](https://aistudio.baidu.com/aistudio/projectdetail/3846170?channelType=0&channel=0)

- [基于人体关键点检测的合规检测](https://aistudio.baidu.com/aistudio/projectdetail/4061642?contributionType=1)

338
## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> 模型库
Y
YixinKristy 已提交
339

Y
YixinKristy 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
- 通用目标检测:
  - [模型库](docs/MODEL_ZOO_cn.md)
  - [PP-YOLOE模型](configs/ppyoloe/README_cn.md)
  - [PP-YOLO模型](configs/ppyolo/README_cn.md)
  - [PP-PicoDet模型](configs/picodet/README.md)
  - [增强版Anchor Free模型TTFNet](configs/ttfnet/README.md)
  - [移动端模型](static/configs/mobile/README.md)
  - [676类目标检测](static/docs/featured_model/LARGE_SCALE_DET_MODEL.md)
  - [两阶段实用模型PSS-Det](configs/rcnn_enhance/README.md)
  - [半监督知识蒸馏预训练检测模型](docs/feature_models/SSLD_PRETRAINED_MODEL.md)
- 通用实例分割
  - [SOLOv2](configs/solov2/README.md)
- 旋转框检测
  - [S2ANet](configs/dota/README.md)
- [关键点检测](configs/keypoint)
  - [PP-TinyPose](configs/keypoint/tiny_pose)
  - HigherHRNet
  - HRNet
  - LiteHRNet
- [多目标跟踪](configs/mot/README.md)
Y
YixinKristy 已提交
360
  - [PP-Tracking](deploy/pptracking/README_cn.md)
Y
YixinKristy 已提交
361 362 363
  - [DeepSORT](configs/mot/deepsort/README_cn.md)
  - [JDE](configs/mot/jde/README_cn.md)
  - [FairMOT](configs/mot/fairmot/README_cn.md)
364
  - [ByteTrack](configs/mot/bytetrack/README.md)
Y
YixinKristy 已提交
365 366 367 368
- 垂类领域
  - [行人检测](configs/pedestrian/README.md)
  - [车辆检测](configs/vehicle/README.md)
  - [人脸检测](configs/face_detection/README.md)
Y
YixinKristy 已提交
369 370
- 场景化工具
  - [实时行人分析工具PP-Human](deploy/pphuman/README.md)
Y
YixinKristy 已提交
371 372 373
- 比赛冠军方案
  - [Objects365 2019 Challenge夺冠模型](static/docs/featured_model/champion_model/CACascadeRCNN.md)
  - [Open Images 2019-Object Detction比赛最佳单模型](static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md)
Y
YixinKristy 已提交
374

375
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> 应用案例
W
wangguanzhong 已提交
376 377

- [人像圣诞特效自动生成工具](static/application/christmas)
W
wangguanzhong 已提交
378
- [安卓健身APP](https://github.com/zhiboniu/pose_demo_android)
W
wangguanzhong 已提交
379

380
## <img src="https://user-images.githubusercontent.com/48054808/160552806-496dc3ba-beb6-4623-8e26-44416b5848bf.png" width="25"/> 第三方教程推荐
W
wangguanzhong 已提交
381 382 383 384 385 386 387

- [PaddleDetection在Windows下的部署(一)](https://zhuanlan.zhihu.com/p/268657833)
- [PaddleDetection在Windows下的部署(二)](https://zhuanlan.zhihu.com/p/280206376)
- [Jetson Nano上部署PaddleDetection经验分享](https://zhuanlan.zhihu.com/p/319371293)
- [安全帽检测YOLOv3模型在树莓派上的部署](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md)
- [使用SSD-MobileNetv1完成一个项目--准备数据集到完成树莓派部署](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md)

388
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> 版本更新
W
wangguanzhong 已提交
389

K
Kaipeng Deng 已提交
390
版本更新内容请参考[版本更新文档](docs/CHANGELOG.md)
W
wangguanzhong 已提交
391

392
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20"> 许可证书
W
wangguanzhong 已提交
393 394 395

本项目的发布受[Apache 2.0 license](LICENSE)许可认证。

396
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> 贡献代码
W
wangguanzhong 已提交
397 398

我们非常欢迎你可以为PaddleDetection提供代码,也十分感谢你的反馈。
Y
YixinKristy 已提交
399

400
- 感谢[Mandroide](https://github.com/Mandroide)清理代码并且统一部分函数接口。
W
Wenyu 已提交
401 402
- 感谢[FL77N](https://github.com/FL77N/)贡献`Sparse-RCNN`模型。
- 感谢[Chen-Song](https://github.com/Chen-Song)贡献`Swin Faster-RCNN`模型。
W
wangguanzhong 已提交
403 404
- 感谢[yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) 开发PP-Tracking GUI界面
- 感谢[Shigure19](https://github.com/Shigure19) 开发PP-TinyPose健身APP
405
- 感谢[manangoel99](https://github.com/manangoel99)贡献Wandb可视化方式
W
wangguanzhong 已提交
406

407
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> 引用
W
wangguanzhong 已提交
408 409 410 411 412 413 414 415 416

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```