test_layers.py 38.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18
import paddle.fluid.layers as layers
19
from paddle.fluid.layers.device import get_places
20 21 22
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
23
import decorators
J
jerrywgz 已提交
24
from paddle.fluid.initializer import Constant
Y
Yu Yang 已提交
25 26 27 28


class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
29
        program = Program()
Y
Yu Yang 已提交
30 31 32 33 34
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
35
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
36
            self.assertIsNotNone(avg_cost)
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
        print(str(program))
Y
Yu Yang 已提交
39 40

    def test_recognize_digits_mlp(self):
41
        program = Program()
Y
Yu Yang 已提交
42 43 44 45 46 47
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
48 49 50 51
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
52
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
53
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
54 55 56
            self.assertIsNotNone(avg_cost)

        print(str(program))
57 58

    def test_simple_conv2d(self):
F
fengjiayi 已提交
59
        program = Program()
Y
Yu Yang 已提交
60
        with program_guard(program, startup_program=Program()):
61 62
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
Y
Yu Yang 已提交
63 64 65
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
66

67 68
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
69 70 71 72
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
73

F
fengjiayi 已提交
74
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
75
        program = Program()
Y
Yu Yang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
97
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
98 99

        print(str(program))
100

Q
QI JUN 已提交
101 102
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
143
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
144 145 146
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
147 148 149

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
150
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
151
            label_dict_len = 10
Y
Yu Yang 已提交
152 153 154
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
155 156 157 158
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
159 160 161 162
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
M
minqiyang 已提交
163
                num_chunk_types=(label_dict_len - 1) // 2)
Q
qiaolongfei 已提交
164 165
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
Y
Yu Yang 已提交
166 167

        print(str(program))
Q
QI JUN 已提交
168

169 170 171 172 173
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
174
            ignore_index = -1
175 176
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
J
jerrywgz 已提交
177
                    x=dat, label=lbl, ignore_index=ignore_index))
178 179
        print(str(program))

W
weixing02 已提交
180 181 182
    def test_hsigmoid(self):
        program = Program()
        with program_guard(program):
W
weixing02 已提交
183 184
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[2], dtype='int64')
W
weixing02 已提交
185 186 187 188 189
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x, label=y, num_classes=2))
        print(str(program))

J
JiabinYang 已提交
190
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
191 192 193 194
        program2 = Program()
        with program_guard(program2):
            x2 = layers.data(name='x2', shape=[4, 8], dtype='float32')
            y2 = layers.data(name='y2', shape=[4], dtype='int64')
195 196 197 198
            path_table = layers.data(
                name='path_table', shape=[4, 6], dtype='int64')
            path_code = layers.data(
                name='path_code', shape=[4, 6], dtype='int64')
J
JiabinYang 已提交
199 200 201 202
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x2,
                    label=y2,
203
                    num_classes=6,
204 205 206
                    path_table=path_table,
                    path_code=path_code,
                    is_custom=True))
J
JiabinYang 已提交
207 208
            print(str(program2))

Y
yangyaming 已提交
209
    def test_sequence_expand(self):
Y
yangyaming 已提交
210 211 212 213
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
Y
yangyaming 已提交
214 215
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1))
Y
yangyaming 已提交
216 217
        print(str(program))

Y
Yibing Liu 已提交
218 219 220 221 222 223 224 225
    def test_sequence_unpad(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
            length = layers.data(name='length', shape=[1], dtype='int64')
            self.assertIsNotNone(layers.sequence_unpad(x=x, length=length))
        print(str(program))

J
JiabinYang 已提交
226 227 228 229
    def test_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
J
JiabinYang 已提交
230 231 232 233 234 235
            self.assertIsNotNone(
                layers.pool2d(
                    x,
                    pool_size=[5, 3],
                    pool_stride=[1, 2],
                    pool_padding=(2, 1)))
J
JiabinYang 已提交
236

237 238 239 240 241 242 243
    def test_adaptive_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool2d(
                    x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
244 245 246
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
247 248 249 250
            self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
251 252 253 254 255 256 257 258

    def test_adaptive_pool3d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 244, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool3d(
                    x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
259 260 261 262
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
263 264 265 266
            self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
267

Y
yangyaming 已提交
268 269 270 271 272 273 274
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
Y
yangyaming 已提交
275 276
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
277 278 279 280 281 282 283 284
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

285 286 287 288 289 290 291 292 293 294 295 296
    def test_dynamic_lstmp(self):
        program = Program()
        with program_guard(program):
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
        print(str(program))

Y
yangyaming 已提交
297 298 299 300 301 302
    def test_sequence_softmax(self):
        program = Program()
        with program_guard(program):
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
303
            self.assertIsNotNone(layers.sequence_softmax(seq))
Y
yangyaming 已提交
304 305
        print(str(program))

D
dangqingqing 已提交
306 307 308 309 310
    def test_softmax(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[10], dtype='float32')
            hid = layers.fc(input=data, size=20)
311
            self.assertIsNotNone(layers.softmax(hid))
D
dangqingqing 已提交
312 313
        print(str(program))

J
JiabinYang 已提交
314
    def test_space_to_depth(self):
J
JiabinYang 已提交
315 316 317
        program = Program()
        with program_guard(program):
            data = layers.data(
J
JiabinYang 已提交
318
                name='data',
J
JiabinYang 已提交
319 320 321
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
J
JiabinYang 已提交
322
            self.assertIsNotNone(layers.space_to_depth(data, 3))
J
JiabinYang 已提交
323 324
        print(str(program))

Y
Yibing Liu 已提交
325 326 327
    def test_sequence_unsqueeze(self):
        program = Program()
        with program_guard(program):
328
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
329
            out = layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
330 331
            self.assertIsNotNone(out)
        print(str(program))
332

Y
Yibing Liu 已提交
333 334 335 336
    def test_squeeze(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
337
            out = layers.squeeze(input=x, axes=[2])
Y
Yibing Liu 已提交
338 339 340
            self.assertIsNotNone(out)
        print(str(program))

D
dragonwarrior 已提交
341 342 343 344 345 346 347
    def test_lrn(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[6, 2, 2], dtype='float32')
            self.assertIsNotNone(layers.lrn(data))
        print(str(program))

Q
qijun 已提交
348 349 350
    def test_get_places(self):
        program = Program()
        with program_guard(program):
351
            x = get_places(device_count=4)
Y
Yang Yu 已提交
352
            self.assertIsNotNone(x)
Q
qijun 已提交
353 354
        print(str(program))

355 356 357 358 359 360 361 362
    def test_sequence_reshape(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            self.assertIsNotNone(out)
        print(str(program))

W
wanghaoshuang 已提交
363 364 365 366
    def test_im2sequence(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
367
            y = layers.data(name='y', shape=[], dtype='float32')
W
wanghaoshuang 已提交
368
            output = layers.im2sequence(
369 370 371 372 373
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
W
wanghaoshuang 已提交
374 375 376
            self.assertIsNotNone(output)
        print(str(program))

Y
Yang Yu 已提交
377 378 379 380
    @decorators.prog_scope()
    def test_nce(self):
        window_size = 5
        words = []
381
        for i in range(window_size):
Y
Yang Yu 已提交
382 383 384 385 386
            words.append(
                layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
387
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
388 389

        embs = []
390
        for i in range(window_size):
Y
Yang Yu 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
408
        avg_loss = layers.mean(loss)
Y
Yang Yu 已提交
409 410 411
        self.assertIsNotNone(avg_loss)
        print(str(default_main_program()))

Y
yangyaming 已提交
412 413 414 415 416 417 418 419
    def test_row_conv(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            self.assertIsNotNone(out)
        print(str(program))

420 421 422 423 424 425 426 427 428 429
    def test_multiplex(self):
        program = Program()
        with program_guard(program):
            x1 = layers.data(name='x1', shape=[4], dtype='float32')
            x2 = layers.data(name='x2', shape=[4], dtype='float32')
            index = layers.data(name='index', shape=[1], dtype='int32')
            out = layers.multiplex(inputs=[x1, x2], index=index)
            self.assertIsNotNone(out)
        print(str(program))

430 431 432 433 434
    def test_softmax_with_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
435 436 437 438
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)
439 440 441 442 443 444 445 446 447 448 449 450 451
            loss = layers.softmax_with_cross_entropy(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

    def test_smooth_l1(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='label', shape=[4], dtype='float32')
            loss = layers.smooth_l1(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    def test_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
            updates = layers.data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Q
Qingsheng Li 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    def test_sequence_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yibing Liu 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
    def test_sequence_slice(self):
        program = Program()
        with program_guard(program):
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            self.assertIsNotNone(out)
        print(str(program))

Y
yangyaming 已提交
508 509 510 511 512 513 514 515 516
    def test_lod_reset(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            print(layers.lod_reset(x=x, y=y))
        print(str(program))

517 518 519 520 521 522 523 524 525 526
    def test_label_smooth(self):
        program = Program()
        with program_guard(program):
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
            self.assertIsNotNone(smooth_label)
        print(str(program))

Q
qingqing01 已提交
527 528 529 530 531 532 533 534 535
    def test_topk(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            self.assertIsNotNone(values)
            self.assertIsNotNone(indices)
        print(str(program))

536 537 538 539 540 541 542 543 544 545
    def test_roi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

546 547 548 549 550 551 552 553 554 555
    def test_psroi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            self.assertIsNotNone(output)
        print(str(program))

J
jerrywgz 已提交
556 557 558 559 560 561 562 563 564 565
    def test_roi_align(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
            self.assertIsNotNone(output)
        print(str(program))

B
baiyf 已提交
566
    def test_resize_bilinear(self):
567 568 569
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
570
            output = layers.resize_bilinear(x, out_shape=[12, 12])
571
            self.assertIsNotNone(output)
B
baiyf 已提交
572
            output = layers.resize_bilinear(x, scale=3)
573 574 575
            self.assertIsNotNone(output)
        print(str(program))

576
    def test_resize_nearest(self):
577 578 579 580 581 582 583 584 585
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, out_shape=[12, 12])
            self.assertIsNotNone(output)
            output = layers.resize_nearest(x, scale=3)
            self.assertIsNotNone(output)
        print(str(program))

586 587 588 589 590 591 592 593
    def test_polygon_box_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 4, 4], dtype="float32")
            output = layers.polygon_box_transform(input=x)
            self.assertIsNotNone(output)
        print(str(program))

594 595 596 597 598 599
    def test_l2_normalize(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 7, 10], dtype="float32")
            output = layers.l2_normalize(x, axis=1)

Q
qingqing01 已提交
600 601 602 603 604 605 606 607
    def test_maxout(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[8, 6, 6], dtype="float32")
            output = layers.maxout(x=data, groups=2)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
608
    def test_crop(self):
609 610 611 612 613 614 615 616
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 5], dtype="float32")
            y = layers.data(name='y', shape=[2, 3], dtype="float32")
            output = layers.crop(x, shape=y)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
617 618 619 620 621 622 623 624 625
    def test_mean_iou(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
            iou = layers.mean_iou(x, y, 2)
            self.assertIsNotNone(iou)
        print(str(program))

626 627 628 629 630 631 632 633 634
    def test_argsort(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)
            self.assertIsNotNone(out)
            self.assertIsNotNone(ids)
        print(str(program))

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    def test_rank_loss(self):
        program = Program()
        with program_guard(program):
            label = layers.data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            left = layers.data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            right = layers.data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
            self.assertIsNotNone(out)
        print(str(program))

657 658 659 660 661 662 663 664 665 666 667
    def test_flatten(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            self.assertIsNotNone(out)

B
Bai Yifan 已提交
668 669 670 671 672
    def test_shape(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
673
            out = layers.shape(input)
B
Bai Yifan 已提交
674 675 676
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
677 678 679 680 681
    def test_pad2d(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
682
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
683 684 685 686 687 688
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
689 690 691 692 693 694
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
W
whs 已提交
695
            self.assertIsNotNone(out)
696
            self.assertIsNotNone(out_1)
W
whs 已提交
697 698
        print(str(program))

J
jerrywgz 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712
    def test_prelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
            self.assertIsNotNone(out)
        print(str(program))

T
tensor-tang 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    def test_brelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_leaky_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_soft_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sigmoid(input, name='sigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_logsigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.logsigmoid(input, name='logsigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_exp(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.exp(input, name='exp')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh(input, name='tanh')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh_shrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh_shrink(input, name='tanh_shrink')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sqrt(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sqrt(input, name='sqrt')
            self.assertIsNotNone(out)
        print(str(program))

    def test_abs(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.abs(input, name='abs')
            self.assertIsNotNone(out)
        print(str(program))

    def test_ceil(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.ceil(input, name='ceil')
            self.assertIsNotNone(out)
        print(str(program))

    def test_floor(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.floor(input, name='floor')
            self.assertIsNotNone(out)
        print(str(program))

    def test_cos(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.cos(input, name='cos')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sin(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sin(input, name='sin')
            self.assertIsNotNone(out)
        print(str(program))

    def test_round(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.round(input, name='round')
            self.assertIsNotNone(out)
        print(str(program))

    def test_reciprocal(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.reciprocal(input, name='reciprocal')
            self.assertIsNotNone(out)
        print(str(program))

    def test_square(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.square(input, name='square')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softplus(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softplus(input, name='softplus')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softsign(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softsign(input, name='softsign')
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
865 866 867 868 869 870 871 872 873 874
    def test_roi_perspective_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

C
chenweihang 已提交
875 876 877
    def test_sequence_enumerate(self):
        program = Program()
        with program_guard(program):
C
chenweihang 已提交
878
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
C
chenweihang 已提交
879 880 881
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)
        print(str(program))

882 883 884 885 886 887 888 889 890
    def test_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
            self.assertIsNotNone(out)

891 892 893 894 895 896 897 898 899
    def test_bpr_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            out = layers.bpr_loss(x, label)
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
900 901 902 903 904 905 906
    def test_expand(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="input", shape=[10], dtype='int32')
            out = layers.expand(x, [1, 2])
        print(str(program))

G
fix  
gongweibao 已提交
907
    def test_uniform_random_batch_size_like(self):
G
fix  
gongweibao 已提交
908 909 910 911 912
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
913
        print(str(program))
G
fix  
gongweibao 已提交
914 915 916 917 918 919

    def test_gaussian_random(self):
        program = Program()
        with program_guard(program):
            out = layers.gaussian_random(shape=[20, 30])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
920
        print(str(program))
G
fix  
gongweibao 已提交
921 922 923 924

    def test_sampling_id(self):
        program = Program()
        with program_guard(program):
G
fix  
gongweibao 已提交
925 926 927 928 929
            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
930 931 932

            out = layers.sampling_id(x)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
933
        print(str(program))
G
fix  
gongweibao 已提交
934 935 936 937 938 939 940 941 942

    def test_gaussian_random_batch_size_like(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
943
        print(str(program))
G
fix  
gongweibao 已提交
944 945 946 947 948 949 950 951

    def test_sum(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.sum(input)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
952
        print(str(program))
G
fix  
gongweibao 已提交
953 954 955 956 957 958

    def test_slice(self):
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

G
fix  
gongweibao 已提交
959 960 961
        program = Program()
        with program_guard(program):
            input = layers.data(
G
fix  
gongweibao 已提交
962 963 964
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
merge  
gongweibao 已提交
965

B
baiyf 已提交
966 967 968 969 970
    def test_softshrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softshrink(input, name='softshrink')
G
fix  
gongweibao 已提交
971
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
972
        print(str(program))
G
fix  
gongweibao 已提交
973

X
Xin Pan 已提交
974 975 976 977 978 979 980 981 982
    def iou_similarity(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[16], dtype="float32")
            y = layers.data(name="y", shape=[16], dtype="float32")
            out = layers.iou_similarity(x, y, name='iou_similarity')
            self.assertIsNotNone(out)
        print(str(program))

983
    def test_grid_sampler(self):
D
dengkaipeng 已提交
984 985
        program = Program()
        with program_guard(program):
986 987
            x = layers.data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
988 989 990
            out = layers.grid_sampler(x, grid)
            self.assertIsNotNone(out)
        print(str(program))
991

W
whs 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    def test_affine_grid(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
            out_shape = layers.data(
                name="out_shape", shape=[-1], dtype="float32")
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
        print(str(program))
D
dengkaipeng 已提交
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    def test_bilinear_tensor_product_layer(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[4], dtype="float32")

            theta = layers.data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)

        print(str(program))

1018 1019 1020 1021 1022 1023 1024 1025 1026
    def test_batch_norm(self):
        program = Program()
        with program_guard(program):
            data = layers.data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)

        print(str(program))

S
shippingwang 已提交
1027 1028 1029
    def test_shuffle_channel(self):
        program = Program()
        with program_guard(program):
S
shippingwang 已提交
1030 1031
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
S
shippingwang 已提交
1032 1033 1034
            self.assertIsNotNone(out)
        print(str(program))

Y
Yu Yang 已提交
1035 1036 1037

if __name__ == '__main__':
    unittest.main()