predict.py 4.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os, sys
Z
zhangjinchao01 已提交
16 17
import numpy as np
from optparse import OptionParser
18 19
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import integer_value_sequence
Z
zhangjinchao01 已提交
20 21 22
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
23
  python predict.py -h
Z
zhangjinchao01 已提交
24 25
"""

26

Z
zhangjinchao01 已提交
27
class SentimentPrediction():
28
    def __init__(self, train_conf, dict_file, model_dir=None, label_file=None):
Z
zhangjinchao01 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        """
        train_conf: trainer configure.
        dict_file: word dictionary file name.
        model_dir: directory of model.
        """
        self.train_conf = train_conf
        self.dict_file = dict_file
        self.word_dict = {}
        self.dict_dim = self.load_dict()
        self.model_dir = model_dir
        if model_dir is None:
            self.model_dir = os.path.dirname(train_conf)

        self.label = None
        if label_file is not None:
            self.load_label(label_file)

        conf = parse_config(train_conf, "is_predict=1")
47 48
        self.network = swig_paddle.GradientMachine.createFromConfigProto(
            conf.model_config)
Z
zhangjinchao01 已提交
49
        self.network.loadParameters(self.model_dir)
E
emailweixu 已提交
50 51
        input_types = [integer_value_sequence(self.dict_dim)]
        self.converter = DataProviderConverter(input_types)
Z
zhangjinchao01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64

    def load_dict(self):
        """
        Load dictionary from self.dict_file.
        """
        for line_count, line in enumerate(open(self.dict_file, 'r')):
            self.word_dict[line.strip().split('\t')[0]] = line_count
        return len(self.word_dict)

    def load_label(self, label_file):
        """
        Load label.
        """
65
        self.label = {}
Z
zhangjinchao01 已提交
66 67 68
        for v in open(label_file, 'r'):
            self.label[int(v.split('\t')[1])] = v.split('\t')[0]

69
    def get_data(self, data):
Z
zhangjinchao01 已提交
70 71 72
        """
        Get input data of paddle format.
        """
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        for line in data:
            words = line.strip().split()
            word_slot = [
                self.word_dict[w] for w in words if w in self.word_dict
            ]
            if not word_slot:
                print "all words are not in dictionary: %s", line
                continue
            yield [word_slot]

    def predict(self, batch_size):

        def batch_predict(batch_data):
            input = self.converter(self.get_data(batch_data))
            output = self.network.forwardTest(input)
            prob = output[0]["value"]
            labs = np.argsort(-prob)
            for idx, lab in enumerate(labs):
                if self.label is None:
                    print("predicting label is %d" % (lab[0]))
                else:
                    print("predicting label is %s" %
                          (self.label[lab[0]]))
96

97 98 99 100 101 102 103 104
        batch = []
        for line in sys.stdin:
            batch.append(line)
            if len(batch) == batch_size:
                batch_predict(batch)
                batch=[]
        if len(batch) > 0:
            batch_predict(batch)
Z
zhangjinchao01 已提交
105 106 107 108

def option_parser():
    usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
    parser = OptionParser(usage="usage: %s [options]" % usage)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    parser.add_option(
        "-n",
        "--tconf",
        action="store",
        dest="train_conf",
        help="network config")
    parser.add_option(
        "-d",
        "--dict",
        action="store",
        dest="dict_file",
        help="dictionary file")
    parser.add_option(
        "-b",
        "--label",
        action="store",
        dest="label",
        default=None,
        help="dictionary file")
    parser.add_option(
129 130 131
        "-c",
        "--batch_size",
        type="int",
132
        action="store",
133 134 135
        dest="batch_size",
        default=1,
        help="the batch size for prediction")
136 137 138 139 140 141 142
    parser.add_option(
        "-w",
        "--model",
        action="store",
        dest="model_path",
        default=None,
        help="model path")
Z
zhangjinchao01 已提交
143 144
    return parser.parse_args()

145

Z
zhangjinchao01 已提交
146 147 148
def main():
    options, args = option_parser()
    train_conf = options.train_conf
149
    batch_size = options.batch_size
Z
zhangjinchao01 已提交
150 151 152 153 154
    dict_file = options.dict_file
    model_path = options.model_path
    label = options.label
    swig_paddle.initPaddle("--use_gpu=0")
    predict = SentimentPrediction(train_conf, dict_file, model_path, label)
155
    predict.predict(batch_size)
Z
zhangjinchao01 已提交
156

157

Z
zhangjinchao01 已提交
158 159
if __name__ == '__main__':
    main()