executor.cc 18.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
Y
Yang Yang 已提交
17

Y
Yi Wang 已提交
18 19 20 21 22
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
23
#include "paddle/fluid/framework/threadpool.h"
24
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
25
#include "paddle/fluid/framework/variable_helper.h"
W
Wu Yi 已提交
26
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
28
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
29

30
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
31
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
32 33
#endif

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
B
baojun-nervana 已提交
36
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
37 38 39

namespace paddle {
namespace framework {
X
Xin Pan 已提交
40 41 42 43 44
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
45

S
fix bug  
sneaxiy 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
    const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
  std::unordered_map<std::string, size_t> ref_cnts;
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        if (skip_vars.count(name)) continue;
        auto* var_desc = block.FindVar(name);
        if (var_desc == nullptr || var_desc->Persistable()) continue;
        auto type = var_desc->Proto()->type().type();
        if (type != proto::VarType::LOD_TENSOR &&
            type != proto::VarType::SELECTED_ROWS &&
            type != proto::VarType::LOD_TENSOR_ARRAY) {
          continue;
        }
S
sneaxiy 已提交
64
        ++ref_cnts[name];
S
fix bug  
sneaxiy 已提交
65 66 67 68 69 70 71 72 73 74 75
      }
    }
  };

  for (auto op_desc : block.AllOps()) {
    update_ref_cnts(op_desc, op_desc->Inputs());
    update_ref_cnts(op_desc, op_desc->Outputs());
  }
  return ref_cnts;
}

Q
Qiao Longfei 已提交
76
ExecutorPrepareContext::ExecutorPrepareContext(
S
fix bug  
sneaxiy 已提交
77 78
    const framework::ProgramDesc& prog, size_t block_id,
    const std::vector<std::string>& skip_ref_cnt_vars)
S
sneaxiy 已提交
79 80
    : prog_(prog), block_id_(block_id) {
  if (GetEagerDeletionThreshold() >= 0) {
S
sneaxiy 已提交
81 82
    global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
                                                        skip_ref_cnt_vars);
S
sneaxiy 已提交
83 84
  }
}
Y
Yu Yang 已提交
85

Q
Qiao Longfei 已提交
86
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
87
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
88
}
Y
Yu Yang 已提交
89

S
fix bug  
sneaxiy 已提交
90
static void DeleteUnusedTensors(
S
sneaxiy 已提交
91
    const Scope& scope, const OperatorBase* op, GarbageCollector* gc,
S
fix bug  
sneaxiy 已提交
92
    std::unordered_map<std::string, size_t>* ref_cnts) {
S
sneaxiy 已提交
93
  std::deque<std::shared_ptr<memory::Allocation>> garbages;
S
sneaxiy 已提交
94 95 96 97 98 99

  auto handler = [&](const VariableNameMap& name_map) {
    for (auto& name_pair : name_map) {
      for (auto& name : name_pair.second) {
        auto it = ref_cnts->find(name);
        if (it == ref_cnts->end()) continue;
S
sneaxiy 已提交
100 101 102 103
        if (--(it->second) != 0) {
          continue;
        }
        auto* var = scope.FindVar(name);
S
sneaxiy 已提交
104
        if (var == nullptr) {
S
sneaxiy 已提交
105 106 107 108 109 110
          continue;
        }

        VLOG(2) << "Erase variable " << name;
        if (var->IsType<LoDTensor>()) {
          garbages.emplace_back(
S
sneaxiy 已提交
111 112 113 114 115
              var->GetMutable<LoDTensor>()->MoveMemoryHolder());
        } else if (var->IsType<SelectedRows>()) {
          garbages.emplace_back(var->GetMutable<SelectedRows>()
                                    ->mutable_value()
                                    ->MoveMemoryHolder());
S
sneaxiy 已提交
116 117 118
        } else if (var->IsType<LoDTensorArray>()) {
          auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
          for (auto& t : *lod_tensor_arr) {
S
sneaxiy 已提交
119
            garbages.emplace_back(t.MoveMemoryHolder());
S
sneaxiy 已提交
120
          }
S
sneaxiy 已提交
121 122
        } else {
          PADDLE_THROW("Type %s of %s is not supported eager deletion",
S
sneaxiy 已提交
123
                       framework::ToTypeName(var->Type()), name);
S
sneaxiy 已提交
124 125 126 127 128 129 130 131
        }
      }
    }
  };

  handler(op->Inputs());
  handler(op->Outputs());

S
sneaxiy 已提交
132 133
  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
S
sneaxiy 已提交
134 135 136
  }
}

D
dzhwinter 已提交
137
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
138

Y
Yancey1989 已提交
139
void Executor::Close() {
W
Wu Yi 已提交
140
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
141 142
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
143 144 145
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
146
#endif
Y
Yancey1989 已提交
147
}
W
Wu Yi 已提交
148

L
Liu Yiqun 已提交
149 150 151
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
152 153 154 155 156 157 158 159 160 161 162 163 164 165

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
166
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
167 168
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
169 170
      } else {
        auto* ptr = scope->Var(var->Name());
171
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
172 173
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
174 175 176 177 178
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
179
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
180 181
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
182 183 184 185
    }
  }
}

Y
Yu Yang 已提交
186
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
187
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
188
  platform::RecordBlock b(block_id);
189
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
B
baojun 已提交
190 191 192
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) operators::NgraphEngine::EnableNgraph(pdesc);
#endif
Q
Qiao Longfei 已提交
193 194
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
195 196
}

197 198 199 200 201 202 203
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
204
    const BlockDesc& block,
L
Liu Yiqun 已提交
205
    const std::map<std::string, const LoDTensor*>& feed_targets,
206 207
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
208
  for (auto* op : block.AllOps()) {
209 210
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
211
      // The input variable's name of feed_op should be feed_holder_name.
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

227
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
228
      // When feed operator are present, so should be feed_holder.
229 230 231 232 233 234 235
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
236 237 238 239 240 241 242 243 244 245 246 247
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
248 249
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
250 251
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
252
  for (auto* op : block.AllOps()) {
253 254
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
255
      // The output variable's name of fetch_op should be fetch_holder_name.
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

271
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
272
      // When fetch operator are present, so should be fetch_holder.
273 274 275 276 277 278 279
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
280 281 282 283 284 285
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
286 287
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
288 289
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
290
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
291
  platform::RecordBlock b(kProgramId);
292
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
293
  bool has_feed_ops =
294
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
295
  bool has_fetch_ops =
296
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
297 298

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
299
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
300
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
301 302
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
303
  }
304 305
  auto* global_block = copy_program->MutableBlock(0);

306
  if (!has_feed_ops) {
307 308
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
309
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
310 311 312
    feed_holder->SetPersistable(true);

    int i = 0;
313
    for (auto& feed_target : (*feed_targets)) {
314
      std::string var_name = feed_target.first;
M
minqiyang 已提交
315
      VLOG(3) << "feed target's name: " << var_name;
316 317 318 319 320 321 322 323 324 325 326 327 328

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

329
  if (!has_fetch_ops) {
330 331
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
332
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
333 334 335
    fetch_holder->SetPersistable(true);

    int i = 0;
336
    for (auto& fetch_target : (*fetch_targets)) {
337
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
338
      VLOG(3) << "fetch target's name: " << var_name;
339 340 341 342 343 344 345 346 347 348 349 350 351

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

352
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
353 354 355
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
356 357
}

Q
Qiao Longfei 已提交
358
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
359 360
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars) {
Q
Qiyang Min 已提交
361
  std::unique_ptr<ExecutorPrepareContext> ctx(
S
fix bug  
sneaxiy 已提交
362
      new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
Y
Yu Yang 已提交
363 364 365 366 367
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiyang Min 已提交
368
  return ctx;
Y
Yu Yang 已提交
369 370
}

T
refine  
typhoonzero 已提交
371
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
372 373 374 375 376 377
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
378
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
379
  size_t idx = 0;
T
typhoonzero 已提交
380
  for (auto& bid : block_ids) {
S
fix bug  
sneaxiy 已提交
381 382 383 384 385 386
    ExecutorPrepareContext* ctx;
    if (skip_ref_cnt_vars.empty()) {
      ctx = new ExecutorPrepareContext(program, bid);
    } else {
      ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
    }
T
typhoonzero 已提交
387 388 389 390 391 392
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
393
    ++idx;
T
typhoonzero 已提交
394 395 396 397
  }
  return result;
}

Y
Yu Yang 已提交
398
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
399 400
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
401
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
402 403 404 405
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
406 407
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
408
  }
Y
Yu Yang 已提交
409

S
sneaxiy 已提交
410
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
411
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
412 413
  // skip while_op and while_grad_op temporarily
  if (max_memory_size >= 0 && !keep_kids) {
S
sneaxiy 已提交
414
    ctx->ResetReferenceCount();
S
sneaxiy 已提交
415 416
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
417
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
418
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
419 420
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
421
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
422 423 424
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
425
#endif
S
sneaxiy 已提交
426 427
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
428 429 430 431 432
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
433
  for (auto& op : ctx->ops_) {
434
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
435

S
fix bug  
sneaxiy 已提交
436
    if (gc) {
S
sneaxiy 已提交
437
      DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
S
sneaxiy 已提交
438
                          &(ctx->runtime_ref_cnts_));
S
sneaxiy 已提交
439
    }
Y
Yu Yang 已提交
440
  }
S
sneaxiy 已提交
441

S
fix bug  
sneaxiy 已提交
442
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
443

Q
qiaolongfei 已提交
444
  if (local_scope != scope) {
Y
Yu Yang 已提交
445
    scope->DeleteScope(local_scope);
446
  } else {
Q
qiaolongfei 已提交
447 448 449 450 451
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
452 453
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
454 455
      scope->DropKids();
    }
Y
Yu Yang 已提交
456 457 458
  }
}

459 460
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
461
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
462 463 464
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
465 466
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

467
  PADDLE_ENFORCE(
468
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
469 470
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
471
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
472 473
      "Program in the prepared context should has fetch_ops.");

474 475 476 477 478
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
479 480
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
481 482 483
    }
  }

W
Wu Yi 已提交
484
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
485 486 487 488 489 490

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
491
      *(*fetch_targets)[fetch_target_name] =
492 493 494 495 496
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

497 498
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
499
  VLOG(3) << "use_mkldnn=True";
500 501 502 503 504 505 506 507
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
508 509 510
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
511 512
#endif
}
Q
qijun 已提交
513 514
}  // namespace framework
}  // namespace paddle