fleet_base.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import abc
import sys

from enum import Enum

from paddle.fluid.optimizer import SGD

from role_maker import RoleMakerBase, Role
from role_maker import MPISymetricRoleMaker
from role_maker import UserDefinedRoleMaker


class Mode(Enum):
    TRANSPILER = 1,
    PSLIB = 2,
    COLLECTIVE = 3


class Fleet(object):
    """
    Fleet is the base class, transpiler and pslib are implementation of Fleet.

    Args:
        mode(Mode): the implementation of Fleet's mode.

    Returns:
        None
    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, mode):
        assert isinstance(mode, Mode)
        self.is_initialized = False
        self.mode = mode
        self.workers = 0
        self.servers = 0
        self.worker_endpoints = []
        self.server_endpoints = []
        self.role = Role.WORKER
        self.current_endpoint = None
        self.current_id = 0
        self.optimizer = None
        self.role_maker_ = None

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        """
        return self.is_worker() and self.current_id == 0

    def worker_id(self):
        """
        Get current worker id.

        Returns:
            int: node id
        """
        return self.current_id

    def get_workers(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        return self.workers

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
        """
        return self.role == Role.WORKER

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
        """
        return self.role == Role.SERVER

    def split_files(self, files):
        """
        split files before distributed training,
        for example, files is [a, b, c ,d, e]  and trainer_num = 2,
        then trainer 0 gets [a, b, c] and trainer 1 gets [d, e]

        Args:
            files(list): file list need to be read.

        Returns:
            list: files belongs to this worker.
        """
        file_num = len(files)
        trainer_id = self.worker_id()
        trainer_num = self.get_workers()
        if trainer_num > file_num:
            raise ValueError("trainer_num should be <= file_num : "
                             "%s > %s" % (trainer_num, file_num))
        start = 0
        end = 0
        for i in range(0, trainer_id + 1):
            length = file_num / trainer_num + (i < (file_num % trainer_num))
            start = end
            end += length
        return files[start:end]

    def init(self, role_maker=None):
        """
        should be called only once in user's python scripts,
        init() will initialize RoleMaker which is used for identifying
            current node's role, e.g. worker, server, etc.

        Args:
            role_maker(RoleMakerBase): subclass of RoleMakerBase.

        Returns:
            None
        """

        if role_maker and not isinstance(role_maker, RoleMakerBase):
            raise ValueError("role_maker must be an instance of RoleMakerBase")

        self.role_maker_ = role_maker

        if isinstance(role_maker, MPISymetricRoleMaker):
            self.role_maker_._generate_role()
            self.role = Role.WORKER if role_maker._is_worker() else Role.SERVER
            self.workers = role_maker._worker_num()
            self.servers = role_maker._server_num()
            self.server_endpoints = role_maker._get_pserver_endpoints()
            self.worker_endpoints = role_maker._get_trainer_endpoints()
            self.current_id = role_maker._worker_index(
            ) if role_maker._is_worker() else role_maker._server_index()
            self.current_endpoint = self.worker_endpoints[self.current_id] \
                if role_maker._is_worker() else self.server_endpoints[self.current_id]

        elif isinstance(role_maker, UserDefinedRoleMaker):
            self.current_id = role_maker.current_id
            self.current_endpoint = role_maker.current_endpoint
            self.workers = role_maker.workers
            self.worker_endpoints = role_maker.worker_endpoints
            self.servers = role_maker.servers
            self.server_endpoints = role_maker.server_endpoints
            self.role = role_maker.role

        else:
            raise ValueError(
                "role_maker must be an instance of UserDefinedRoleMaker/MPISymetricRoleMaker"
            )

        self.is_initialized = True

    @abc.abstractmethod
    def init_worker(self, executor):
        pass

    @abc.abstractmethod
    def run_worker(self, executor, main_program=None):
        pass

    @abc.abstractmethod
    def init_server(self, executor, model_dir=None):
        pass

    @abc.abstractmethod
    def run_server(self, executor):
        pass

    @abc.abstractmethod
    def stop_worker(self):
        pass

    @abc.abstractmethod
    def stop(self, executor):
        pass

    @abc.abstractmethod
    def distributed_optimizer(self, optimizer, strategy=None):
        pass

    @abc.abstractmethod
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
        pass

    @abc.abstractmethod
    def save_persistables(self, executor, dirname, main_program=None):
        pass

    def to_string(self):
        infos = """
        mode             = {}
        workers          = {}
        server_endpoints = {}
        role             = {}
        current_endpoint = {}
        current_id       = {}
        """.format(self.mode, self.workers, self.server_endpoints, self.role,
                   self.current_endpoint, self.current_id)
        return infos


class DistributedOptimizer(object):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.

    Args:
        optimizer(Optimizer): subclass of Optimizer.
        strategy(dict): the user define config for Optimizer.

    Returns:
        None

    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, optimizer, strategy=None):
        if not isinstance(optimizer, SGD.__bases__):
            raise ValueError("optimizer must be an instance of Optimizer")

        if strategy and not isinstance(strategy, dict):
            raise ValueError("strategy must be an instance of Dict")

        self._optimizer = optimizer
        self._strategy = strategy

    @abc.abstractmethod
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.

        Return:
            list: list of (param, grad) pair, grad is the output of backward.

        Examples:
            See examples in `apply_gradients`.
        """
        pass

    @abc.abstractmethod
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        pass

    @abc.abstractmethod
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.

        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        """
        pass