test_conditional_block.py 1.3 KB
Newer Older
Y
Yu Yang 已提交
1
import unittest
Q
Qiao Longfei 已提交
2 3 4 5 6
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.core as core
from paddle.v2.fluid.framework import g_startup_program, g_main_program
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops
Y
Yu Yang 已提交
7 8 9 10 11
import numpy


class ConditionalBlock(unittest.TestCase):
    def test_forward(self):
F
fengjiayi 已提交
12
        data = layers.data(name='X', shape=[1], dtype='float32')
Y
Yu Yang 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
        data.stop_gradient = False
        cond = layers.ConditionalBlock(inputs=[data])
        out = layers.create_tensor(dtype='float32')
        with cond.block():
            hidden = layers.fc(input=data, size=10)
            layers.assign(hidden, out)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        exe.run(g_startup_program)

        x = core.LoDTensor()
        x.set(numpy.random.random(size=(10, 1)).astype('float32'), cpu)

        outs = map(numpy.array, exe.run(feed={'X': x}, fetch_list=[out]))[0]
        print outs
        loss = layers.mean(x=out)
        append_backward_ops(loss=loss)
        outs = map(numpy.array,
                   exe.run(feed={'X': x},
                           fetch_list=[
                               g_main_program.block(0).var(data.name + "@GRAD")
                           ]))[0]
        print outs


if __name__ == '__main__':
    unittest.main()