beam_search_decode_op.h 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <vector>
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using LoDTensorArray = framework::LoDTensorArray;

// all the lod have 2 levels.
// The First is source level, the second is sentence level.
31 32
// source level describe how many prefixes (branchs) for each source sentece
// (beam). sentence level describe how these candidates belong to the prefixes.
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46
const size_t kSourceLevel = 0;
const size_t kSentenceLevel = 1;

template <typename T>
struct Sentence {
  std::vector<int64_t> word_ids;
  std::vector<T> scores;
};

template <typename T>
using SentenceVector = std::vector<Sentence<T>>;

template <typename T>
struct BeamSearchDecoder {
47 48 49
  BeamSearchDecoder(size_t beam_size, int end_id)
      : beam_size_(beam_size), end_id_(end_id) {}

Q
Qiao Longfei 已提交
50 51 52 53 54 55 56 57 58
  /**
   * convert the result sentence_vector for each source sentence into two
   * LodTensor.
   * One is all candidate sentences with word id, one is all candidate sentences
   * with word score.
   * Param:
   *  sentence_vector_list: sentence_vector for each source sentence.
   *  id_tensor: result LoDTensor for sentences of id.
   *  score_tensor: result LoDTensor for sentences of score.
59 60
   *  reverse: whether ids of sentence in sentence_vector_list is reversed
   *  sort_by_score: whether to sort hypotheses of each sentence by scores.
Q
Qiao Longfei 已提交
61 62 63
   */
  void ConvertSentenceVectorToLodTensor(
      std::vector<SentenceVector<T>> sentence_vector_list, LoDTensor* id_tensor,
64
      LoDTensor* score_tensor, bool reverse = true,
65
      bool sort_by_score = true) const;
Q
Qiao Longfei 已提交
66 67

  /**
68 69
   * Gather the hypotheses for each source sentence by backtrace though the
   * LoDTensorArray step_ids whose lods reserve the path in the tree.
Q
Qiao Longfei 已提交
70
   */
71 72 73 74 75 76
  void Backtrace(const LoDTensorArray& step_ids,
                 const LoDTensorArray& step_scores, LoDTensor* id_tensor,
                 LoDTensor* score_tensor) const;

  size_t beam_size_;
  int end_id_;
Q
Qiao Longfei 已提交
77 78 79 80 81
};

template <typename T>
void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
    std::vector<SentenceVector<T>> sentence_vector_list, LoDTensor* id_tensor,
82
    LoDTensor* score_tensor, bool reverse, bool sort_by_score) const {
Q
Qiao Longfei 已提交
83 84 85 86 87 88 89 90 91 92
  size_t src_num = sentence_vector_list.size();

  PADDLE_ENFORCE_NE(src_num, 0, "src_num should not be 0");

  std::vector<size_t> source_level_lod = {0};
  std::vector<size_t> sentence_level_lod = {0};
  std::vector<int64_t> id_data;
  std::vector<T> score_data;

  for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
93 94 95 96 97 98 99 100 101 102
    if (sort_by_score) {
      sort(sentence_vector_list[src_idx].begin(),
           sentence_vector_list[src_idx].end(),
           [reverse](const Sentence<T>& a, const Sentence<T>& b) {
             if (reverse)
               return a.scores.front() > b.scores.front();
             else
               return a.scores.back() > b.scores.back();
           });
    }
Q
Qiao Longfei 已提交
103
    for (Sentence<T>& sentence : sentence_vector_list[src_idx]) {
104 105 106 107 108 109 110 111 112 113 114 115
      if (reverse) {
        id_data.insert(id_data.end(), sentence.word_ids.rbegin(),
                       sentence.word_ids.rend());
        score_data.insert(score_data.end(), sentence.scores.rbegin(),
                          sentence.scores.rend());
      } else {
        id_data.insert(id_data.end(), sentence.word_ids.begin(),
                       sentence.word_ids.end());
        score_data.insert(score_data.end(), sentence.scores.begin(),
                          sentence.scores.end());
      }

Q
Qiao Longfei 已提交
116 117 118 119 120 121 122
      sentence_level_lod.push_back(sentence_level_lod.back() +
                                   sentence.word_ids.size());
    }
    source_level_lod.push_back(source_level_lod.back() +
                               sentence_vector_list[src_idx].size());
  }

123 124 125
  auto cpu_place = std::unique_ptr<paddle::platform::CPUPlace>(
      new paddle::platform::CPUPlace());
  paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place.get());
Q
Qiao Longfei 已提交
126 127 128 129 130 131 132 133

  framework::LoD lod;
  lod.push_back(source_level_lod);
  lod.push_back(sentence_level_lod);

  id_tensor->set_lod(lod);
  id_tensor->Resize({static_cast<int64_t>(id_data.size())});
  id_tensor->mutable_data<int64_t>(paddle::platform::CPUPlace());
Y
Yi Wang 已提交
134
  framework::TensorFromVector<int64_t>(id_data, cpu_ctx, id_tensor);
Q
Qiao Longfei 已提交
135 136 137 138

  score_tensor->set_lod(lod);
  score_tensor->Resize({static_cast<int64_t>(score_data.size())});
  score_tensor->mutable_data<T>(paddle::platform::CPUPlace());
Y
Yi Wang 已提交
139
  framework::TensorFromVector<T>(score_data, cpu_ctx, score_tensor);
Q
Qiao Longfei 已提交
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
template <typename T>
void BeamSearchDecoder<T>::Backtrace(const LoDTensorArray& step_ids,
                                     const LoDTensorArray& step_scores,
                                     LoDTensor* id_tensor,
                                     LoDTensor* score_tensor) const {
  PADDLE_ENFORCE(!step_ids.empty(), "step num should be larger than 0");
  PADDLE_ENFORCE_EQ(step_ids.size(), step_scores.size(),
                    "step_ids and step_scores should be the same");
  const size_t step_num = step_ids.size();
  const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1;
  std::vector<SentenceVector<T>> sentence_vector_list(
      src_num, SentenceVector<T>(beam_size_));
  std::vector<std::vector<size_t>> prefix_idx_vector_list(
      src_num, std::vector<size_t>());
  for (int step_id = step_num - 1; step_id >= 0; --step_id) {
    auto& cur_ids = step_ids.at(step_id);
    auto& cur_scores = step_scores.at(step_id);
    for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
      // for each source sentence
      auto& sentence_vector = sentence_vector_list.at(src_idx);
      auto& prefix_idx_vector = prefix_idx_vector_list.at(src_idx);
      size_t src_prefix_start = cur_ids.lod().at(kSourceLevel)[src_idx];
      size_t src_prefix_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1];
      if (prefix_idx_vector.empty()) {  // be finished and pruned at this step
                                        // or the last time step
        for (size_t prefix_idx = src_prefix_start; prefix_idx < src_prefix_end;
             ++prefix_idx) {
          size_t candidate_start = cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          size_t candidate_end =
              cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1];
          for (size_t candidate_idx = candidate_start;
               candidate_idx < candidate_end; ++candidate_idx) {
            prefix_idx_vector.push_back(prefix_idx);
            size_t idx = prefix_idx_vector.size() - 1;
            auto cur_id = cur_ids.data<int64_t>()[candidate_idx];
            auto cur_score = cur_scores.data<T>()[candidate_idx];
            sentence_vector.at(idx).word_ids.push_back(cur_id);
            sentence_vector.at(idx).scores.push_back(cur_score);
          }
        }
      } else {  // use prefix_idx_vector to backtrace
        size_t src_candidate_start =
            cur_ids.lod().at(kSentenceLevel)[src_prefix_start];
        size_t prefix_idx = src_prefix_start;
        size_t candidate_num =
            cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
            cur_ids.lod().at(kSentenceLevel)[prefix_idx];
        for (size_t idx = 0; idx < prefix_idx_vector.size(); ++idx) {
          auto candidate_idx = prefix_idx_vector.at(idx);
          auto cur_id = cur_ids.data<int64_t>()[candidate_idx];
          auto cur_score = cur_scores.data<T>()[candidate_idx];
          if (cur_id != end_id_ || sentence_vector.at(idx).word_ids.empty()) {
            // to skip redundant end tokens
            sentence_vector.at(idx).word_ids.push_back(cur_id);
            sentence_vector.at(idx).scores.push_back(cur_score);
          }

          while (src_candidate_start + candidate_num <=
                 candidate_idx) {  // search the corresponding prefix
            prefix_idx++;
            candidate_num += cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
                             cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          }
          prefix_idx_vector.at(idx) = prefix_idx;
        }
      }
    }
  }

  ConvertSentenceVectorToLodTensor(sentence_vector_list, id_tensor,
                                   score_tensor, true, true);
}

Q
Qiao Longfei 已提交
215 216
}  // namespace operators
}  // namespace paddle