lrn_mkldnn_op.cc 8.0 KB
Newer Older
T
Tomasz Patejko 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/lrn_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
namespace {
template <typename T, typename... Args>
std::shared_ptr<T> insert_to_context(const std::string& key,
                                     const MKLDNNDeviceContext& dev_ctx,
                                     Args&&... args) {
  auto p = std::static_pointer_cast<T, void>(dev_ctx.GetBlob(key));

  if (!p) {
    p = std::make_shared<T>(args...);
    dev_ctx.SetBlob(key, std::static_pointer_cast<void, T>(p));
  }

  return p;
}
}  // namespace

T
Tomasz Patejko 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(std::is_same<T, float>::value,
                   "MKLDNN LRN must use float data.");
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto x = ctx.Input<Tensor>("X");
    auto out = ctx.Output<Tensor>("Out");
    auto mid = ctx.Output<Tensor>("MidOut");

    auto input_data = x->data<T>();
    auto output_data = out->mutable_data<T>(ctx.GetPlace());
    mid->mutable_data<T>(ctx.GetPlace());

    const int n = ctx.Attr<int>("n");
    const float alpha = ctx.Attr<float>("alpha");
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");
65
    const bool is_test = ctx.Attr<bool>("is_test");
T
Tomasz Patejko 已提交
66 67 68 69 70 71 72 73 74 75 76 77

    auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
    e_mid = e_mid.constant(k);

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto dst_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

78 79 80 81 82 83 84
    auto forward_desc = mkldnn::lrn_forward::desc{mkldnn::prop_kind::forward,
                                                  mkldnn::lrn_across_channels,
                                                  src_md,
                                                  n,
                                                  alpha,
                                                  beta,
                                                  k};
T
Tomasz Patejko 已提交
85 86 87 88 89

    auto src_memory_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};
    auto dst_memory = mkldnn::memory{{dst_md, mkldnn_engine},
                                     static_cast<void*>(output_data)};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    std::unique_ptr<mkldnn::lrn_forward> forward_op = nullptr;

    if (!is_test) {
      const std::string key = ctx.op().Output("Out");
      const std::string key_src_memory = key + "@lrn_src_memory";
      const std::string key_pd = key + "@lrn_pd";
      const std::string key_workspace_memory = key + "@lrn_workspace_memory";

      auto forward_pd = insert_to_context<mkldnn::lrn_forward::primitive_desc>(
          key_pd, dev_ctx, forward_desc, mkldnn_engine);

      auto src_memory = insert_to_context<mkldnn::memory>(
          key_src_memory, dev_ctx, src_memory_pd);

      src_memory->set_data_handle(
          static_cast<void*>(const_cast<T*>(input_data)));

      auto workspace_memory = insert_to_context<mkldnn::memory>(
          key_workspace_memory, dev_ctx,
          forward_pd->workspace_primitive_desc());

      forward_op.reset(new mkldnn::lrn_forward{*forward_pd, *src_memory,
                                               *workspace_memory, dst_memory});
T
Tomasz Patejko 已提交
113

114 115 116 117 118 119 120
    } else {
      auto forward_pd =
          mkldnn::lrn_forward::primitive_desc{forward_desc, mkldnn_engine};
      auto src_memory = mkldnn::memory{
          src_memory_pd, static_cast<void*>(const_cast<T*>(input_data))};
      auto workspace_memory =
          mkldnn::memory{forward_pd.workspace_primitive_desc()};
T
Tomasz Patejko 已提交
121

122 123 124
      forward_op.reset(new mkldnn::lrn_forward{forward_pd, src_memory,
                                               workspace_memory, dst_memory});
    }
T
Tomasz Patejko 已提交
125

126
    std::vector<mkldnn::primitive> pipeline = {*forward_op};
T
Tomasz Patejko 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }
};

template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(std::is_same<T, float>::value,
                   "MKLDNN LRN must use float data.");
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");

    auto x = ctx.Input<Tensor>("X");

    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    const std::string key = ctx.op().Input("Out");
    const std::string key_src_memory = key + "@lrn_src_memory";
    const std::string key_pd = key + "@lrn_pd";
    const std::string key_workspace_memory = key + "@lrn_workspace_memory";

    const int n = ctx.Attr<int>("n");
    const float alpha = ctx.Attr<float>("alpha");
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto x_grad_data = x_grad->mutable_data<T>(ctx.GetPlace());
    auto out_grad_data = out_grad->data<T>();

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_dst_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_dst_memory =
        mkldnn::memory{{diff_dst_md, mkldnn_engine},
                       static_cast<void*>(const_cast<float*>(out_grad_data))};

    auto diff_src_memory = mkldnn::memory{{diff_src_md, mkldnn_engine},
                                          static_cast<void*>(x_grad_data)};

    auto backward_desc = mkldnn::lrn_backward::desc{
180
        mkldnn::lrn_across_channels, src_md, diff_src_md, n, alpha, beta, k};
T
Tomasz Patejko 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    auto forward_pd = dev_ctx.GetBlob(key_pd);

    auto backward_pd = mkldnn::lrn_backward::primitive_desc{
        backward_desc, mkldnn_engine,
        *static_cast<mkldnn::lrn_forward::primitive_desc*>(forward_pd.get())};

    std::shared_ptr<void> workspace_memory =
        dev_ctx.GetBlob(key_workspace_memory);

    auto src_memory = dev_ctx.GetBlob(key_src_memory);
    auto backward_op = mkldnn::lrn_backward{
        backward_pd, *static_cast<mkldnn::memory*>(src_memory.get()),
        diff_dst_memory, *static_cast<mkldnn::memory*>(workspace_memory.get()),
        diff_src_memory};

    std::vector<mkldnn::primitive> pipeline = {backward_op};
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNGradOpKernel<float>);