test_conv3d_op.py 5.9 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5
import unittest
import numpy as np
from op_test import OpTest


6 7 8 9 10 11 12
def conv3d_forward_naive(input, filter, group, conv_param):
    in_n, in_c, in_d, in_h, in_w = input.shape
    out_c, f_c, f_d, f_h, f_w = filter.shape
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
    sub_out_c = out_c / group

C
chengduoZH 已提交
13 14 15 16 17 18 19
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilations']

    out_d = 1 + (in_d + 2 * pad[0] - (dilation[0] * (f_d - 1) + 1)) / stride[0]
    out_h = 1 + (in_h + 2 * pad[1] - (dilation[1] * (f_h - 1) + 1)) / stride[1]
    out_w = 1 + (in_w + 2 * pad[2] - (dilation[2] * (f_w - 1) + 1)) / stride[2]

20 21
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

C
chengduoZH 已提交
22 23 24 25
    d_bolck_d = (dilation[0] * (f_d - 1) + 1)
    d_bolck_h = (dilation[1] * (f_h - 1) + 1)
    d_bolck_w = (dilation[2] * (f_w - 1) + 1)

26 27 28 29
    input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], ),
                               (pad[2], )),
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
30 31 32 33 34

    filter_dilation = np.zeros((out_c, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
                    d_bolck_w:dilation[2]] = filter

35 36 37 38 39 40
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
                    input_pad_masked = \
                        input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
41 42 43 44 45 46
                        d * stride[0]:d * stride[0] + d_bolck_d,
                        i * stride[1]:i * stride[1] + d_bolck_h,
                        j * stride[2]:j * stride[2] + d_bolck_w]

                    f_sub = filter_dilation[g * sub_out_c:(g + 1) *
                                            sub_out_c, :, :, :, :]
47 48 49
                    for k in range(sub_out_c):
                        out[:, g * sub_out_c + k, d, i, j] = \
                            np.sum(input_pad_masked * f_sub[k, :, :, :, :],
C
chengduoZH 已提交
50
                                   axis=(1, 2, 3, 4))
51 52 53 54

    return out


C
chengduoZH 已提交
55 56
class TestConv3dOp(OpTest):
    def setUp(self):
57 58
        self.init_group()
        self.init_op_type()
C
chengduoZH 已提交
59
        self.init_dilation()
60 61
        self.init_test_case()

C
chengduoZH 已提交
62 63 64 65 66
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilations': self.dilations
        }
67 68
        input = np.random.random(self.input_size).astype("float32")
        filter = np.random.random(self.filter_size).astype("float32")
C
chengduoZH 已提交
69 70
        output = conv3d_forward_naive(input, filter, self.groups,
                                      conv3d_param).astype("float32")
C
chengduoZH 已提交
71 72 73

        self.inputs = {'Input': input, 'Filter': filter}
        self.attrs = {
74 75
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
76 77
            'groups': self.groups,
            'dilations': self.dilations
C
chengduoZH 已提交
78 79 80 81 82 83 84 85
        }
        self.outputs = {'Output': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
C
chengduoZH 已提交
86
            set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
87

C
chengduoZH 已提交
88
    def test_check_grad_no_filter(self):
C
chengduoZH 已提交
89 90 91
        self.check_grad(
            ['Input'],
            'Output',
C
chengduoZH 已提交
92
            max_relative_error=0.03,
C
chengduoZH 已提交
93 94 95 96 97 98
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        self.check_grad(
            ['Filter'],
            'Output',
C
chengduoZH 已提交
99
            max_relative_error=0.03,
C
chengduoZH 已提交
100 101
            no_grad_set=set(['Input']))

102 103 104
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
105
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
106 107 108 109
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

C
chengduoZH 已提交
110 111 112
    def init_dilation(self):
        self.dilations = [1, 1, 1]

113
    def init_group(self):
C
chengduoZH 已提交
114 115
        self.groups = 1

116 117 118
    def init_op_type(self):
        self.op_type = "conv3d"

C
chengduoZH 已提交
119

C
chengduoZH 已提交
120 121 122 123
class TestCase1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
124
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
125 126 127 128 129
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3, 3]


C
chengduoZH 已提交
130 131 132
class TestWithGroup1(TestConv3dOp):
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
133 134


C
chengduoZH 已提交
135
class TestWithGroup2(TestCase1):
136
    def init_group(self):
C
chengduoZH 已提交
137 138
        self.groups = 3

139

C
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150
class TestWith1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
151

C
chengduoZH 已提交
152 153 154
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

class TestWithDilation(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
170

C
chengduoZH 已提交
171

武毅 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
class TestCudnn(TestConv3dOp):
    def init_op_type(self):
        self.op_type = "conv3d_cudnn"


class TestWithGroup1Cudnn(TestWithGroup1):
    def init_op_type(self):
        self.op_type = "conv3d_cudnn"


class TestWithGroup2Cudnn(TestWithGroup2):
    def init_op_type(self):
        self.op_type = "conv3d_cudnn"


class TestWith1x1Cudnn(TestWith1x1):
    def init_op_type(self):
        self.op_type = "conv3d_cudnn"


# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
# class TestWithDilationCudnn(TestWithDilation):
#     def init_op_type(self):
#         self.op_type = "conv3d_cudnn"

C
chengduoZH 已提交
198 199
if __name__ == '__main__':
    unittest.main()