keypoints_3d_operators.py 10.1 KB
Newer Older
XYZ_916's avatar
XYZ_916 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
import cv2
import numpy as np
import math
import copy
import random
import uuid
from numbers import Number, Integral

from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform, get_warp_matrix
from ppdet.core.workspace import serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

registered_ops = []

__all__ = [
    'CropAndFlipImages', 'PermuteImages', 'RandomFlipHalfBody3DTransformImages'
]

import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
from mpl_toolkits.mplot3d import Axes3D


def register_keypointop(cls):
    return serializable(cls)


def register_op(cls):
    registered_ops.append(cls.__name__)
    if not hasattr(BaseOperator, cls.__name__):
        setattr(BaseOperator, cls.__name__, cls)
    else:
        raise KeyError("The {} class has been registered.".format(cls.__name__))
    return serializable(cls)


class BaseOperator(object):
    def __init__(self, name=None):
        if name is None:
            name = self.__class__.__name__
        self._id = name + '_' + str(uuid.uuid4())[-6:]

    def apply(self, sample, context=None):
        """ Process a sample.
        Args:
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
        """
        return sample

    def __call__(self, sample, context=None):
        """ Process a sample.
        Args:
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
        """
        if isinstance(sample, Sequence):  # for batch_size
            for i in range(len(sample)):
                sample[i] = self.apply(sample[i], context)
        else:
            # image.shape changed
            sample = self.apply(sample, context)
        return sample

    def __str__(self):
        return str(self._id)


@register_keypointop
class CropAndFlipImages(object):
    """Crop all images"""

    def __init__(self, crop_range, flip_pairs=None):
        super(CropAndFlipImages, self).__init__()
        self.crop_range = crop_range
        self.flip_pairs = flip_pairs

    def __call__(self, records):  # tuple
        images = records["image"]
        images = images[:, :, ::-1, :]
        images = images[:, :, self.crop_range[0]:self.crop_range[1]]
        records["image"] = images

        if "kps2d" in records.keys():
            kps2d = records["kps2d"]

            width, height = images.shape[2], images.shape[1]
            kps2d = np.array(kps2d)
            kps2d[:, :, 0] = kps2d[:, :, 0] - self.crop_range[0]

            for pair in self.flip_pairs:
                kps2d[:, pair[0], :], kps2d[:,pair[1], :] = \
                    kps2d[:,pair[1], :], kps2d[:,pair[0], :].copy()

            records["kps2d"] = kps2d

        return records


@register_op
class PermuteImages(BaseOperator):
    def __init__(self):
        """
        Change the channel to be (batch_size, C, H, W) #(6, 3, 1080, 1920)
        """
        super(PermuteImages, self).__init__()

    def apply(self, sample, context=None):
        images = sample["image"]
        images = images.transpose((0, 3, 1, 2))

        sample["image"] = images

        return sample


@register_keypointop
class RandomFlipHalfBody3DTransformImages(object):
    """apply data augment to images and coords
    to achieve the flip, scale, rotate and half body transform effect for training image
    Args:
        trainsize (list):[w, h], Image target size
        upper_body_ids (list): The upper body joint ids
        flip_pairs (list): The left-right joints exchange order list
        pixel_std (int): The pixel std of the scale
        scale (float): The scale factor to transform the image
        rot (int): The rotate factor to transform the image
        num_joints_half_body (int): The joints threshold of the half body transform
        prob_half_body (float): The threshold of the half body transform
        flip (bool): Whether to flip the image
    Returns:
        records(dict): contain the image and coords after tranformed
    """

    def __init__(self,
                 trainsize,
                 upper_body_ids,
                 flip_pairs,
                 pixel_std,
                 scale=0.35,
                 rot=40,
                 num_joints_half_body=8,
                 prob_half_body=0.3,
                 flip=True,
                 rot_prob=0.6,
                 do_occlusion=False):
        super(RandomFlipHalfBody3DTransformImages, self).__init__()
        self.trainsize = trainsize
        self.upper_body_ids = upper_body_ids
        self.flip_pairs = flip_pairs
        self.pixel_std = pixel_std
        self.scale = scale
        self.rot = rot
        self.num_joints_half_body = num_joints_half_body
        self.prob_half_body = prob_half_body
        self.flip = flip
        self.aspect_ratio = trainsize[0] * 1.0 / trainsize[1]
        self.rot_prob = rot_prob
        self.do_occlusion = do_occlusion

    def halfbody_transform(self, joints, joints_vis):
        upper_joints = []
        lower_joints = []
        for joint_id in range(joints.shape[0]):
            if joints_vis[joint_id][0] > 0:
                if joint_id in self.upper_body_ids:
                    upper_joints.append(joints[joint_id])
                else:
                    lower_joints.append(joints[joint_id])
        if np.random.randn() < 0.5 and len(upper_joints) > 2:
            selected_joints = upper_joints
        else:
            selected_joints = lower_joints if len(
                lower_joints) > 2 else upper_joints
        if len(selected_joints) < 2:
            return None, None
        selected_joints = np.array(selected_joints, dtype=np.float32)
        center = selected_joints.mean(axis=0)[:2]
        left_top = np.amin(selected_joints, axis=0)
        right_bottom = np.amax(selected_joints, axis=0)
        w = right_bottom[0] - left_top[0]
        h = right_bottom[1] - left_top[1]
        if w > self.aspect_ratio * h:
            h = w * 1.0 / self.aspect_ratio
        elif w < self.aspect_ratio * h:
            w = h * self.aspect_ratio
        scale = np.array(
            [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
            dtype=np.float32)
        scale = scale * 1.5

        return center, scale

    def flip_joints(self, joints, joints_vis, width, matched_parts, kps2d=None):
        # joints: (6, 24, 3),(num_frames, num_joints, 3)

        joints[:, :, 0] = width - joints[:, :, 0] - 1  # x
        if kps2d is not None:
            kps2d[:, :, 0] = width - kps2d[:, :, 0] - 1

        for pair in matched_parts:
            joints[:, pair[0], :], joints[:,pair[1], :] = \
                joints[:,pair[1], :], joints[:,pair[0], :].copy()

            joints_vis[:,pair[0], :], joints_vis[:,pair[1], :] = \
                joints_vis[:,pair[1], :], joints_vis[:,pair[0], :].copy()

            if kps2d is not None:
                kps2d[:, pair[0], :], kps2d[:,pair[1], :] = \
                    kps2d[:,pair[1], :], kps2d[:,pair[0], :].copy()

        # move to zero
        joints -= joints[:, [0], :]  # (batch_size, 24, 3),numpy.ndarray

        return joints, joints_vis, kps2d

    def __call__(self, records):
        images = records[
            'image']  #kps3d, kps3d_vis, images. images.shape(num_frames, width, height, 3)

        joints = records['kps3d']
        joints_vis = records['kps3d_vis']

        kps2d = None
        if 'kps2d' in records.keys():
            kps2d = records['kps2d']

        if self.flip and np.random.random() <= 0.5:
            images = images[:, :, ::-1, :]  # 图像水平翻转 (6, 1080, 810, 3)
            joints, joints_vis, kps2d = self.flip_joints(
                joints, joints_vis, images.shape[2], self.flip_pairs,
                kps2d)  # 关键点左右对称翻转
        occlusion = False
        if self.do_occlusion and random.random() <= 0.5:  # 随机遮挡
            height = images[0].shape[0]
            width = images[0].shape[1]
            occlusion = True
            while True:
                area_min = 0.0
                area_max = 0.2
                synth_area = (random.random() *
                              (area_max - area_min) + area_min) * width * height

                ratio_min = 0.3
                ratio_max = 1 / 0.3
                synth_ratio = (random.random() *
                               (ratio_max - ratio_min) + ratio_min)

                synth_h = math.sqrt(synth_area * synth_ratio)
                synth_w = math.sqrt(synth_area / synth_ratio)
                synth_xmin = random.random() * (width - synth_w - 1)
                synth_ymin = random.random() * (height - synth_h - 1)

                if synth_xmin >= 0 and synth_ymin >= 0 and synth_xmin + synth_w < width and synth_ymin + synth_h < height:
                    xmin = int(synth_xmin)
                    ymin = int(synth_ymin)
                    w = int(synth_w)
                    h = int(synth_h)

                    mask = np.random.rand(h, w, 3) * 255
                    images[:, ymin:ymin + h, xmin:xmin + w, :] = mask[
                        None, :, :, :]
                    break

        records['image'] = images
        records['kps3d'] = joints
        records['kps3d_vis'] = joints_vis
        if kps2d is not None:
            records['kps2d'] = kps2d

        return records