resnet.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
based on https://github.com/tensorflow/models/blob/master/official/resnet/resnet_model.py

Get help: python resnet.py --help
See performance on flowers: python resnet.py
Train on cifar10: python resnet.py --data=cifar10 --with_test
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import time
import numpy as np

import paddle.v2 as paddle
import tensorflow as tf

DTYPE = tf.float32


def parse_args():
    parser = argparse.ArgumentParser('Convolution model benchmark.')
    parser.add_argument(
        '--model',
        type=str,
        choices=['resnet'],
        default='resnet',
        help='The model architecture.')
    parser.add_argument(
        '--batch_size', type=int, default=32, help='The minibatch size.')
    parser.add_argument(
        '--use_fake_data',
        action='store_true',
        help='use real data or fake data')
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=5,
        help='The first num of minibatch num to skip, for better performance test'
    )
    parser.add_argument(
        '--iterations',
        type=int,
        default=105,
        help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=300, help='The number of passes.')
    parser.add_argument(
        '--order',
        type=str,
        default='NHWC',
        choices=['NCHW', 'NHWC'],
        help='The data order, now only support NCHW.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--data',
        type=str,
        default='flowers102',
        choices=['flowers102', 'cifar10'],
        help='The kinds of data.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--with_test',
        action='store_true',
        help='If set, test the testset during training.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
    args = parser.parse_args()
    return args


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    vars(args)['iterations'] = vars(args)['pass_num'] * 1000 if vars(args)[
        'with_test'] else vars(args)['iterations']
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def fixed_padding(inputs, kernel_size, data_format):
    """Pads the input along the spatial dimensions independently of input size.
  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
                 Should be a positive integer.
    data_format: The input format ('channels_last' or 'channels_first').
  Returns:
    A tensor with the same format as the input with the data either intact
    (if kernel_size == 1) or padded (if kernel_size > 1).
  """
    pad_total = kernel_size - 1
    pad_beg = pad_total // 2
    pad_end = pad_total - pad_beg

    if data_format == 'channels_first':
        padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end],
                                        [pad_beg, pad_end]])
    else:
        padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
                                        [pad_beg, pad_end], [0, 0]])
    return padded_inputs


def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
    """Strided 2-D convolution with explicit padding."""
    # The padding is consistent and is based only on `kernel_size`, not on the
    # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
    # This is consistent with PaddlePaddle.
    # In addition, the calculation for output size in TensorFlow can refer: 
    # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/common_shape_fns.cc
    if strides > 1:
        inputs = fixed_padding(inputs, kernel_size, data_format)

    return tf.layers.conv2d(
        inputs=inputs,
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=('SAME' if strides == 1 else 'VALID'),
        use_bias=False,
        kernel_initializer=tf.variance_scaling_initializer(),
        data_format=data_format)


def conv_bn(inputs,
            filters,
            kernel_size,
            strides,
            is_training,
            data_format,
            act=True):
    # def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
    # set fused=True for a significant performance boost. See
    # https://www.tensorflow.org/performance/performance_guide#common_fused_ops
    inputs = conv2d_fixed_padding(
        inputs=inputs,
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        data_format=data_format)
    inputs = tf.layers.batch_normalization(
        inputs=inputs,
        axis=1 if data_format == 'channels_first' else 3,
        momentum=0.9,
        epsilon=1e-05,
        center=True,
        scale=True,
        training=is_training,
        fused=True)
    if act:
        inputs = tf.nn.relu(inputs)
    return inputs


def basicblock(inputs, filters, is_training, projection_shortcut, strides,
               data_format):
    shortcut = inputs
    if projection_shortcut is not None:
        shortcut = projection_shortcut(inputs)
    inputs = conv_bn(inputs, filters, 3, strides, is_training, data_format)
    inputs = conv_bn(inputs, filters, 3, 1, is_training, data_format, act=False)
    inputs = inputs + shortcut
    inputs = tf.nn.relu(inputs)
    return inputs


def bottleneck(inputs, filters, is_training, projection_shortcut, strides,
               data_format):
    shortcut = inputs
    if projection_shortcut is not None:
        shortcut = projection_shortcut(inputs)
    inputs = conv_bn(inputs, filters, 1, strides, is_training, data_format)
    inputs = conv_bn(inputs, filters, 3, 1, is_training, data_format, act=False)
    inputs = conv_bn(
        inputs, filters * 4, 1, 1, is_training, data_format, act=False)
    inputs = inputs + shortcut
    inputs = tf.nn.relu(inputs)
    return inputs


def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name,
                data_format):
    # Bottleneck blocks end with 4x the number of filters as they start with
    filters_out = 4 * filters if block_fn is bottleneck else filters

    def projection_shortcut(inputs):
        return conv2d_fixed_padding(
            inputs=inputs,
            filters=filters_out,
            kernel_size=1,
            strides=strides,
            data_format=data_format)

    # Only the first block per block_layer uses projection_shortcut and strides
    inputs = block_fn(inputs, filters, is_training, projection_shortcut,
                      strides, data_format)

    for _ in range(1, blocks):
        inputs = block_fn(inputs, filters, is_training, None, 1, data_format)

    return tf.identity(inputs, name)


def resnet_imagenet(depth, class_dim, data_format):
    """Returns the ResNet model for a given size and number of output classes."""

    def resnet_generator(block_fn,
                         layers,
                         num_classes,
                         data_format='channels_last'):
        if data_format is None:
            data_format = ('channels_first'
                           if tf.test.is_built_with_cuda() else 'channels_last')

        def model(inputs, is_training):
            """Constructs the ResNet model given the inputs."""
            if data_format == 'channels_first':
                # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
                # This provides a large performance boost on GPU. See
                # https://www.tensorflow.org/performance/performance_guide#data_formats
                inputs = tf.transpose(inputs, [0, 3, 1, 2])

            inputs = conv_bn(inputs, 64, 7, 2, is_training, data_format)
            inputs = tf.identity(inputs, 'initial_conv')
            inputs = tf.layers.max_pooling2d(
                inputs=inputs,
                pool_size=3,
                strides=2,
                padding='SAME',
                data_format=data_format)
            inputs = tf.identity(inputs, 'initial_max_pool')
            inputs = block_layer(inputs, 64, block_fn, layers[0], 1,
                                 is_training, 'block_layer1', data_format)
            inputs = block_layer(inputs, 128, block_fn, layers[1], 2,
                                 is_training, 'block_layer2', data_format)
            inputs = block_layer(inputs, 256, block_fn, layers[2], 2,
                                 is_training, 'block_layer3', data_format)
            inputs = block_layer(inputs, 512, block_fn, layers[3], 2,
                                 is_training, 'block_layer4', data_format)
            inputs = tf.layers.average_pooling2d(
                inputs=inputs,
                pool_size=7,
                strides=1,
                padding='VALID',
                data_format=data_format)
            inputs = tf.identity(inputs, 'final_avg_pool')
            inputs = tf.reshape(inputs,
                                [-1, 512 if block_fn is basicblock else 2048])
            inputs = tf.layers.dense(inputs=inputs, units=num_classes)
            inputs = tf.identity(inputs, 'final_dense')
            return inputs

        return model

    model_params = {
        18: {
            'block': basicblock,
            'layers': [2, 2, 2, 2]
        },
        34: {
            'block': basicblock,
            'layers': [3, 4, 6, 3]
        },
        50: {
            'block': bottleneck,
            'layers': [3, 4, 6, 3]
        },
        101: {
            'block': bottleneck,
            'layers': [3, 4, 23, 3]
        },
        152: {
            'block': bottleneck,
            'layers': [3, 8, 36, 3]
        },
        200: {
            'block': bottleneck,
            'layers': [3, 24, 36, 3]
        }
    }
    if depth not in model_params:
        raise ValueError('Not a valid depth:', depth)
    params = model_params[depth]
    return resnet_generator(params['block'], params['layers'], class_dim,
                            data_format)


def resnet_cifar10(depth, num_classes, data_format):
    if depth % 6 != 2:
        raise ValueError('depth must be 6n + 2:', depth)

    num_blocks = (depth - 2) // 6

    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')

    def model(inputs, is_training):
        inputs = conv_bn(inputs, 16, 3, 1, is_training, data_format)
        inputs = tf.identity(inputs, 'initial_conv')
        inputs = block_layer(inputs, 16, basicblock, num_blocks, 1, is_training,
                             'block_layer1', data_format)
        inputs = block_layer(inputs, 32, basicblock, num_blocks, 2, is_training,
                             'block_layer2', data_format)
        inputs = block_layer(inputs, 64, basicblock, num_blocks, 2, is_training,
                             'block_layer3', data_format)
        inputs = tf.layers.average_pooling2d(
            inputs=inputs,
            pool_size=8,
            strides=1,
            padding='VALID',
            data_format=data_format)
        inputs = tf.identity(inputs, 'final_avg_pool')
        inputs = tf.reshape(inputs, [-1, 64])
        inputs = tf.layers.dense(inputs=inputs, units=num_classes)
        inputs = tf.identity(inputs, 'final_dense')
        return inputs

    return model


def run_benchmark(args, data_format='channels_last', device='/cpu:0'):
    """Our model_fn for ResNet to be used with our Estimator."""

    class_dim = 1000
    dshape = (None, 224, 224, 3)

    pdshape = (3, 224, 224)
    if args.data == 'flowers102':
        class_dim = 102
        dshape = (None, 224, 224, 3)
        pdshape = (3, 224, 224)
    elif args.data == 'cifar10':
        class_dim = 10
        dshape = (None, 32, 32, 3)
        pdshape = (3, 32, 32)

    with tf.device(device):
        images = tf.placeholder(DTYPE, shape=dshape)
        labels = tf.placeholder(tf.int64, shape=(None, ))
        is_training = tf.placeholder('bool')
        onehot_labels = tf.one_hot(labels, depth=class_dim)

        network = resnet_cifar10(
            32, class_dim,
            data_format) if args.data == 'cifar10' else resnet_imagenet(
                50, class_dim, data_format)

        logits = network(inputs=images, is_training=is_training)

        cross_entropy = tf.losses.softmax_cross_entropy(
            logits=logits, onehot_labels=onehot_labels)
        avg_cost = tf.reduce_mean(cross_entropy)

        correct = tf.equal(tf.argmax(logits, 1), labels)
        accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

        lr = 0.1 if args.data == 'cifar10' else 0.01
        optimizer = tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9)

        # Batch norm requires update_ops to be added as a train_op dependency.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10()
            if args.data == 'cifar10' else paddle.dataset.flowers.train(),
            buf_size=5120),
        batch_size=args.batch_size)
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10()
        if args.data == 'cifar10' else paddle.dataset.flowers.test(),
        batch_size=100)

    def test():
        test_accs = []
        for batch_id, data in enumerate(test_reader()):
            test_images = np.array(
                map(lambda x: np.transpose(x[0].reshape(pdshape),
                axes=[1, 2, 0]), data)).astype("float32")
            test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
            test_accs.append(
                accuracy.eval(feed_dict={
                    images: test_images,
                    labels: test_labels,
                    is_training: False
                }))
        print("Pass = %d, Train performance = %f imgs/s, Test accuracy = %f\n" %
              (pass_id, num_samples / train_elapsed, np.mean(test_accs)))

    config = tf.ConfigProto(
        intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        init_g = tf.global_variables_initializer()
        init_l = tf.local_variables_initializer()
        sess.run(init_g)
        sess.run(init_l)

        if args.use_fake_data:
            data = train_reader().next()
            images_data = np.array(
                    map(lambda x: np.transpose(x[0].reshape(pdshape),
                    axes=[1, 2, 0]), data)).astype("float32")
            labels_data = np.array(map(lambda x: x[1], data)).astype('int64')
        iters, num_samples, start_time = 0, 0, 0.0
        for pass_id in range(args.pass_num):
            if iters == args.iterations:
                break
            train_accs = []
            train_losses = []
            for batch_id, data in enumerate(train_reader()):
                if iters == args.skip_batch_num:
                    start_time = time.time()
                    num_samples = 0
                if iters == args.iterations:
                    break
                if not args.use_fake_data:
                    images_data = np.array(
                        map(lambda x: np.transpose(x[0].reshape(pdshape),
                        axes=[1, 2, 0]), data)).astype("float32")
                    labels_data = np.array(map(lambda x: x[1], data)).astype(
                        'int64')
                _, loss, acc = sess.run([train_op, avg_cost, accuracy],
                                        feed_dict={
                                            images: images_data,
                                            labels: labels_data,
                                            is_training: True
                                        })
                iters += 1
                train_accs.append(acc)
                train_losses.append(loss)
                num_samples += len(data)
                print("Pass=%d, Iter=%d, Loss=%f, Accuray=%f\n" %
                      (pass_id, iters, loss, acc))

            train_elapsed = time.time() - start_time
            print("Pass=%d, Loss=%f, Accuray=%f\n" %
                  (pass_id, np.mean(train_losses), np.mean(train_accs)))

            # evaluation
            if args.with_test:
                test()

        if not args.with_test:
            duration = time.time() - start_time
            examples_per_sec = num_samples / duration
            sec_per_batch = duration / (iters - args.skip_batch_num)

            print('Total examples: %d, total time: %.5f' %
                  (num_samples, duration))
            print('%.5f examples/sec, %.5f sec/batch' %
                  (examples_per_sec, sec_per_batch))


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    if tf.test.is_built_with_cuda():
        device = '/device:GPU:0'
        if args.order == 'NHWC':
            data_format = 'channels_last'
        else:
            data_format = 'channels_first'
    else:
        device = '/cpu:0'
        if args.order == 'NHWC':
            data_format = 'channels_last'
        else:
            raise ValueError('Only support NHWC order in CPU mode')

    run_benchmark(args, data_format, device)